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Chapter 1

Introduction

This is the final report for the NASA funded project NAG-l-1184 entitled "Crack

Growth Prediction Methodology for Multi-Site Damage." The primary objective of

the project was to create a capability to simulate curvilinear fatigue crack growth

and ductile tearing in aircraft fuselages subjected to widespread fatigue damage.

The second objective was to validate the capability by way of comparisons to ex-

perimental results. Both objectives have been achieved and the results are detailed

herein. The body of this report is derived primarily fl'om the Ph.D. thesis of the

first author [19].

1.1 Overview

Modern aircraft structures are designed using a damage tolerance philosophy. This

design philosophy envisions sufficient strength and structural integrity of the air-

craft to sustain major damage and to avoid catastrophic failure. However, struc-

tural aging of the aircraft may significantly reduce the strength below an acceptable

level; this raises many important safety issues.

Concerns about aging aircraft are reinforced by the in-flight structural failure

of an Aloha Airlines Boeing 737 on April 28, 1988 [97]. The failure precipitated

fl'om the link-up of small fatigue cracks extending fl'om adjacent rivet holes in a

fuselage lap-splice joint. This caused approximately 18 feet of the upper crown

skin and structure to separate fl'om the fuselage (see Figures 1.1 and 1.2). The

1988 Aloha Airlines accident created a revolution in the aircraft community. The

problems associated with aging aircraft have to be quantified and the methodology

to ensure the structural integrity of airplanes has to be reassessed [5].

One of the most notable problems in aging aircraft is widespread fatigue damage

(WFD) defined in [139] as "the simultaneous presence of fatigue cracks at multi-

pie structural details that are of sufficient size and density whereby the structure

will no longer meet its damage tolerance requirement." In response to such aging

aircraft problems, the National Aeronautics and Space Administration (NASA) ini-

tiated an Airframe Structural Integrity Program (ASIP) [52, 95, 53, 54] to develop
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Figure 1.1:1988 Aloha Airlines accident(aircraft after landing).
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Figure 1.2:1988 Aloha Airlines accident the shaded area illustrates the part of

fuselage lost at cruising altitude.



an advanced analysis methodology for predicting structural integrity and residual

strength s of fuselage structures with WFD. The analysis methodology would al-

low engineers to maintain the aging fleet economically while insuring continuous

airworthiness.

The work described in this thesis is part of the ASIP program. The main

objective of this work is to develop a computational analysis methodology to sim-

ulate realistic crack growth and to predict remaining life and residual strength of

complex built-up structures. While the methodology developed is generic in na-

ture, the particular focus is on fuselage structural integrity where WFD is likely

to occur as the fleet grows older. The analysis methodology will help to determine

service inspection intervals, quantitatively evaluate inspection findings, and design

and certify damage-tolerant structural repairs. Thus, the outcome will improve

the technology to support the safe operation of the current fleet and the design of

more damage-tolerant aircraft for the next-generation fleet.

1.2 Background 1: Structural Integrity of Fuse-

lage Structures

A general overview of the structural integrity of a pressurized fuselage with cracks

is provided as background material for the thesis. In particular, the following issues

are discussed:

• concerns about WFD related to the loss of residual strength,

• the characterization of WFD in riveted fuselage structures,

• typical life of aircraft structures and the dominant behavior of cracks, and

finally

• the analysis methodology described in this thesis to evaluate the structural

integrity of damaged structures.

1.2.1 WFD in Fuselage Structures

The philosophy of damage tolerance presumes that any damage initiated by fatigue,

accident, or corrosion will be found before catastrophic failure [138]. The safety

of the aircraft heavily depends upon finding cracks before they reach a critical

length. The occurrence of WFD, however, drastically reduces the residual strength

or decreases the critical crack size as illustrated in Figure 1.3. The loss of residual

strength in the presence of WFD has raised great safety concerns for aging aircraft.

SResidual strength is the maximum load carrying capacity of a damaged struc-

ture.
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Figure 1.3: Illustration of effect of WFD on residual strength and critical crack

size.

To establish the characteristics of WFD in fuselage riveted structures, Piascik

et al. [105] and Harris et al. [54] conducted teardown fractographic examinations

of aircraft components. A four bay section of a Boeing 747 fuselage containing

a longitudinal lap splice joint was examined after conducting a full-scale fatigue

test with 60,000 full pressurization cycles; this is about three times the original

economic design life of the aircraft. Several observations were made fi'om detailed
non-destructive and destructive examinations of each rivet hole:

1. crack initiation mechanisms included high local stresses, fi'etting along mat-

ing surfaces, and manufacturing defects created during the riveting process;

2. fatigue cracks were present at virtually every rivet hole in the upper row of

the lap joint;

3. the lengths of all of the fatigue cracks at link-up were approximately the

same.

The last observation implies that as long as the crack has extended a consider-

able distance fi'om the rivet head, the crack growth behavior is somewhat indepen-

dent of the initiating mechanism. Thus, the typical life of aircraft structures can

be subdivided into the nucleation and crack growth periods as shown in Figure 1.4.

The nucleation period heavily depends on micro-structural details of the material.

The microscopic studies provide fundamental understanding and phenomenological

criteria for fatigue and fi'acture used in macro-scale applications. Regardless of the

initiation mechanism, fi'acture mechanics is adequate to describe the macrocrack

behavior for practical problems. The methodology developed herein is intended

for the macro-scale and it is the crack growth period that is of primary interest.
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Figure 1.4: Illustration of typical life of aircraft structures.

1.2.2 Crack Growth in Thin Sheet Metals

In general, crack growth in thin, ductile materials used in aircraft fuselages is likely

to experience fatigue and stable crack growth before the occurrence of fast fl'ac-

ture and final failure. Fatigue is a process of cumulative damage that is caused

by repeated fluctuating loads. Fatigue crack propagation can be characterized by

a crack growth-rate model that predicts the number of loading cycles required to

propagate a fatigue crack to a critical size. Stress intensity factors (SIFs) un-

der fatigue loading are below the critical value for quasi-static or unstable crack

propagation. Under such circumstance, linear elastic fracture mechanics (LEFM)

suffices to characterize the crack growth-rate model. Stable crack growth and final

failure generally occur at the very last loading cycle of the life of aircraft. Crack

propagation at this stage involves elastic-plastic stable tearing followed by fast-

fracture. Since crack growth is no longer under small-scale yielding conditions,

elastic-plastic fracture mechanics (EPFM) is needed to characterize the fracture

behavior and to predict the residual strength.

1.2.3 Bulging in Pressurized Thin Shell Structures

For cracks in a pressurized fuselage, the out-of-plane deformation or bulging at

crack edges is an essential characteristic feature of the displacement fields. Fol-

lowing Potyondy et al. [108], the dominant factors that affect the behavior of

through-cracks in the skin of pressurized fuselages are:

1. a geometrically nonlinear stiffening effect that restricts the crack edge bulging,

2. the presence of stiffening elements that alter the stress distribution in the

skin,

3. the internal pressure and the mechanical loads that act on the structure, and

4. plasticity effects.

All the factors described above are taken into consideration in developing the

analysis methodology in this work. The following general guidelines are used to

characterize crack growth and to evaluate fuselage structural integrity:



For fatigue crackgrowth, usethin shellanalyseswith geometricnonlinearity
to evaluateSIFsfor shellsunder membraneand bending loading. The SIFs
are then usedto evaluatecrackgrowth-rate.

For stablecrack growth, usethin shell analyseswith geometricand material
nonlinearity to evaluatecracktip openingangle(CTOA). The critical CTOA
is then used to control the crack advancement. Structural integrity and
residualstrengthare then evaluatedbasedon the predicted resultsof elastic-
plastic crack growth simulations.

1.3 Background 2: Computational Issues for Crack

Growth Simulation

To simulate realistic crack growth where crack trajectories are not known a priori,

continual updating of the geometry is required. This feature makes conventional

programs for computational solid mechanics difiqcult to use, if used alone. In this

section, a brief overview of the main computational issues for arbitrary, discrete

crack growth simulations is provided. Key aspects of the high-level description of

the implementation to make the crack growth simulations efiqcient are presented u.

Discrete crack growth simulation is an incremental process, where a series of

steps is repeated for a progression of models. The process continues until a suitable

termination condition is reached. Results of such a simulation might include one or

more of the following: a final crack geometry, a loading versus crack size history,

a crack opening profile, or a history of the crack-front fracture parameters. In

general, each increment in the process relies on previously computed results and

represents one crack configuration. Following Carter et al. [17, 18], data in each

crack growth increment can be divided into: representation database (Ri, where

the subscript denotes the increment number), analysis database (Ai), equilibrium

database (Ei), and fracture parameter database (Fi). Each simulation of crack

growth increment involves three major processes, a discretization process (D), a

solution process (S), and an update process (U). The sequence of operations is

illustrated in Figure 1.5. A discretization process, D, primarily consisting of a

meshing function, M, transforms a representational description of a cracked body

to a discrete model suitable for stress analysis. A solution process, S, computes

unknown field variables, Ei, and fracture parameters, Fi. An update process, U,

takes the equilibrium state field variables and the existing representation, using

a function that predicts crack shape evolution, C, creates a new representational

database. The major problem in using conventional programs alone to simulate

uIt is not the intent of the author to describe details of computational issues

about arbitrary crack growth, but instead present a broad background and a de-

parture point to introduce the software written and developed as part of this thesis.

The readers are referred to [143, 17, 18] for more detailed and in-depth discussion.
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Figure 1.5: Illustration of the sequence of operations on databases and processes

involved in each crack growth increment.

discrete crack growth is that they are ill-suited for tracking geometry changes that

accompany crack growth unless the growth is constrained to be along existing

element edges or faces. For general cases, where crack trajectories are not known

a priori, a general representational model provides the key to emciently handle

crack growth simulations.

1.4 FRANC3D/STAGS Software Environment

A software system FRANC3D/STAGS that incorporates the conceptual crack

growth model described above to support the analysis methodology in evaluating

structural integrity of aging aircraft is developed. The system combines a topology

based program, FRANC3D (FRacture ANalysis Code for 3D solids and shells), and

a general nonlinear shell finite element program, STAGS (STructual Analysis of

General Shells). FRANC3D has been under development by the Cornell Fracture

Group since the late 1980s. The aim is a systematic representational model for

arbitrary crack growth analysis. The key concepts embodied in FRANC3D are:

• solid modeling tools,

,, a topological data structure that separates topology fl'om geometry,

,, the association of model attributes with topological entities, and



• a hierarchy of topological models to organize and guide the discretization

process.

The representational model in FRANC3D is well-suited for tracking the geom-

etry changes that accompany crack growth. The task of updating the representa-

tional model and generating a sequence of analysis models is separated from the

task of performing an analysis on a particular model. For the FRANC3D/STAGS

software, the analyses are performed by the STAGS code.

STAGS is a finite element code for general-purpose analysis of shell structures

developed by Lockheed-Martin's Advanced Technology Center [113]. The main

analysis capabilities in STAGS are:

• linear elastic stress analysis,

• geometrically and materially nonlinear stress analysis,

• linear bifurcation buckling analysis, and

• transient response analysis.

The FRANC3D/STAGS software first developed by Potyondy [106] is further

modified by the author to support the evolving analysis methodology for evaluating

structural integrity of aircraft structures.

The software components of FRANC3D/STAGS necessary to perform arbitrary

crack growth simulation are illustrated in Figure 1.6. The FRANC3D code con-

trois the entire process, allowing the analyst to compute the equilibrium states for

a series of structural configurations. The STAGS code performs the stress analy-

sis. Finally, an interface program is written to facilitate the data communication

between the two codes.

1.5 Organization of the Dissertation

The primary objective of the dissertation is to develop an accurate structural

analysis methodology and a useful and usable software program for predicting the

structural integrity and residual strength of fuselage structures. The dissertation

is divided into two parts: (1) elastic-plastic crack growth analyses and residual

strength prediction with self-similar crack growth, Chapters 2 4; and (2) crack

trajectory prediction with non-self-similar, curvilinear crack growth, Chapters 5
7.

Chapter 2 reviews and critiques various fracture mechanics methods for sim-

ulating elastic-plastic crack growth and predicting residual strength of thin-sheet

metallic structures. Among the methods, the CTOA fracture criterion is found

to be superior due to its relative independence of the geometry of the structure,

the length of the crack, and the presence of multiple cracks. The concepts and

formulations of the CTOA criterion are presented. Elastic-plastic crack growth,
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and their interactions necessary to perform arbitrary crack growth sim-

ulation (modified after [106]).
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link-up of multiple cracks, and residual strength analyses using the CTOA fracture
criterion are discussed.

Chapters 3 and 4 describe finite element analyses of fracture tests using the

CTOA fracture criterion. Elastic-plastic crack growth simulations and residual

strength prediction of fracture coupon tests and full-scale fuselage panel tests are

presented. In Chapter 3, fracture behavior in coupon tests including middle-crack

tension (MT) and multiple crack specimens is analyzed. In Chapter 4, fracture

behavior in full-scale narrow body and wide body panel tests is analyzed. Possible

scenarios that can occur in pressurized fuselages are examined, including lead crack

growth, multi-site damage, multiple crack interaction, plastic wake from fatigue

crack growth, tear strap failure, and corrosion damage.

Chapters 5 through 7, the second part of the dissertation, consist of mate-

rial related to crack trajectory prediction. An evolving methodology to improve

structural integrity of aircraft structures using the crack turning phenomenon is
discussed.

Chapter 5 reviews and critiques various crack growth directional criteria for

crack trajectory prediction. A directional criterion based on the maximum tan-

gential stress theory, but taking into account the effect of T-stress and fracture

toughness orthotropy is developed. In Chapter 6, the path independent contour

integral method for T-stress evaluation is presented. The numerical accuracy using

the path independent integral is assessed by highly accurate two-dimensional p-

and hp-version adaptive finite element analyses. Chapter 7 analyzes curvilinear

crack growth in coupon tests and in full-scale narrow body fuselage panel tests.

The T-stress and fracture toughness orthotropy effect on crack trajectory predic-

tion is examined.

The final chapter summarizes the contributions of this thesis, draws conclu-

sions, and where appropriate, provides recommendations for future work.



Chapter 2

Theory for CTOA-Driven
Elastic-Plastic Crack Growth and

Residual Strength Analysis

This chapter together with Chapters 3 and 4 gives a comprehensive treatise on us-

ing the crack tip opening angle (CTOA) fl'acture criterion to predict elastic-plastic

crack growth and residual strength of thin-sheet metallic structures. Theories, con-

cepts, and formulations related to the CTOA-driven fl'acture criterion are given in

this chapter. Elastic-plastic crack growth simulations and residual strength pre-

diction of coupon tests and full-scale fuselage panel tests are presented in the next

two chapters.

2.1 Introduction

To predict successfully fracture behavior and residual strength of aircraft fuselage

structures subjected to widespread fatigue damage (WFD), a fl'acture criterion

independent of the geometry of the structure, the length of the crack, and the

presence of multi-site damage (MSD) is required [29]. In this chapter, a brief

evaluation of various fl'acture mechanics methods to simulate elastic-plastic crack

growth and to predict residual strength of damaged structures is given. The evalu-

ation focuses on the applicability to thin-sheet metallic structures with single and

multiple cracks where plastic flow makes a substantial contribution to crack growth

resistance.

Among the fracture methods, the superior nature of the CTOA fl'acture cri-

terion to characterize elastic-plastic crack growth in thin-sheet metals is revealed

after review of two recent evaluations [91, 28]. Theories for simulating the CTOA-

driven crack growth are discussed and guidelines for using the CTOA fracture

criterion to predict residual strength of aircraft structures are presented.

11
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2.2 Evaluation of Fracture Mechanics Methods

Thin sheet metallic structures in ductile states generally undergo stable crack

growth before the occurrence of fast fracture. To have an accurate and reliable

prediction of residual strength for such structures, a fracture criterion that can

characterize stable crack growth under conditions of general yielding is needed.

Various fracture mechanics methods have been developed over the past several

decades. However, for materials exhibiting a large amount of plasticity and stable

crack growth prior to failure, there is no consensus on the most satisfactory method

[116, 91]. To evaluate various methods in assessing crack growth resistance and

predicting failure of flawed structures, an experimental and predictive round robin

was conducted in 1979-1980 by the ASTM Committee E-24 on Fracture Testing

[91]. The fracture analysis methods used in the round robin included:

1. linear elastic fracture mechanics (LEFM) corrected for size effects or for

plastic yielding [91],

2. equivalent energy [148],

3. the two-parameter fracture criterion, KF and m [87],

. the deformation plasticity failure assessment diagram based on deformation

plasticity, a J-integral estimation scheme, and a solution fl'om the Plastic

Handbook [10, 75],

5. the theory of ductile fl'acture [11],

6. the K_-curve with the Dugdale model [37],

7. the effective KR-curve [79],

8. a two-dimensional (2D) finite element analysis using the CTOA criterion

with stable crack growth [90], and

9. a three-dimensional (3D) finite element analysis using a crack-fl'ont singular-

ity parameter with a stationary crack [81].

Fracture tests were conducted on compact tension specimens (CT), middle-

crack tension specimens (MT), and three-hole-crack tension specimens (THCT)

as shown in Figure 2.1. Three materials tested were 7075-T651 aluminum alloy,

2024-T351 aluminum alloy, and 304 stainless steel. The accuracy of the prediction

methods was judged by the failure loads obtained fl'om experiments. For 7075-

T651 aluminum alloy, the best methods were the effective KR-curve, a 2D finite

element analysis using CTOA with stable crack growth, and the KR-curve with

the Dugdale model. For 2024-T351 aluminum alloy, the best methods were the

two-parameter fl'acture criterion, a 2D finite element analysis using CTOA with

stable crack growth, the KR-curve with the Dugdale model, the effective KR-curve,
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Figure 2.1: Specimen configurations tested and analyzed in ASTM round robin

(after [91]).

and the deformation plasticity failure assessment diagram. For 304 stainless steel,

the best methods were the effective Kn-curve, a 2D finite element analysis using

CTOA with stable crack growth, the two-parameter fracture criterion, and the

deformation plasticity failure assessment diagram.

These tests were conducted using specimens with a single crack configuration.

Recently, fracture tests were conducted on a 0.09 inch thick, 2024-T3 aluminum

alloy using CT, MT, and MSD specimens [28]. Several fracture mechanics methods

were again evaluated including the effective Kn-curve [79, 3], the J-integral resis-

tance curve (JR) [92], the crack-opening resistance curve (an) [55], the T*-integral

resistance curve (T_) [4], the plastic-zone link-up criterion [139], and the critical

CTOA fracture criterion using a 3D finite element analysis [29]. The study con-

cluded that the plastic-zone link-up criterion had limited use in predicting fracture

behavior of specimens. The effective Kn, Jn, T_, and an fracture criteria could

predict MSD fracture behavior of some larger specimens based on small specimen

tests, but were limited to a certain size of specimens. The critical CTOA fracture

criterion using a 3D, elastic-plastic finite element analysis was able to predict the

fracture behavior for all specimen sizes.

Based on the above evaluations, the CTOA-driven, elastic-plastic stable crack

growth simulation appears to be a plausible fracture analysis method to assess

crack growth resistance and to predict residual strength of thin-sheet metallic

structures.
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2.3 CTOA Fracture Criterion

The CTOA fi'acture criterion is essentially an integration of the near-tip strains. It

evolves fi'om the critical crack tip opening displacement (CTOD) concept proposed

by Wells [144]. Since the CTOD has a limiting value of zero at the crack tip, the

local slope of the crack tip opening profile, or CTOA, was suggested to characterize

the crack growth behavior [2, 36]. Newman [90], Rice and Sorensen [121], and

Kanninen and Popelar [64] further defined the CTOA as the crack tip opening

angle measured at a fixed distance behind the moving crack tip.

The CTOA fi'acture criterion asserts that the angle maintains a constant value

during stable crack growth for a given thickness of a metallic material. This phe-

nomenon has been observed in numerous experiments for a wide range of metals

[66, 63, 65, 90, 34, 94], indirectly supported fi'om slip-line field solutions [121,118],

and verified by numerical simulations [36, 90, 64, 93, 35, 30, 27, 29, 28, 20, 23, 22].

Tests on aluminum alloys as well as steels [65, 90] have confirmed that the CTOA

is essentially constant after a certain transitional period of stable crack growth. A

larger critical CTOA during the initiation of stable tearing rapidly decreases to a

constant value. The amount of crack growth to reach the constant CTOA is ap-

proximately equal to the specimen thickness [34]. Based on a fatigue marker load

technique and scanning electron microscope observations, Dawicke and Sutton [34]

concluded that the non-constant CTOA region is associated with severe tunneling

during the initiation of stable crack growth.

Asymptotic solutions of a growing crack provide indirect support for using the

critical CTOA criterion. Rice et al. [118], extending the work of Rice and Sorensen

[121], obtained Prandtl slip-line field solutions for a Mode I, plane-strain growing

crack in a nonhardening elastic-plastic solid. Based on the asymptotic solutions,

they proposed that a similar geometric profile of crack opening very near the tip

is maintained during crack growth. The criterion for continuing crack growth in

[121, 118] is:

at_ a dY _ e/_ (2.1)d ao da + [3 In _-

where (_cis the critical CTOD measured at a small characteristic distance d behind

the growing crack tip 1. The dJ/da represents the rate of external applied loading

during crack growth. The a0, E, and e in Equation (2.1) are the yield stress,

the elastic modulus, and the natural logarithm base, respectively. The length

parameter R and material parameters oe and /3 are to be determined by tests or

numerical analyses. This asymptotic field crack growth criterion is equivalent to

the CTOA fi'acture criterion.

The ability of the CTOA fi'acture criterion to simulate elastic-plastic crack

growth has been verified by many numerical analyses, de Koning [36] and Anderson

[2] were among the first to demonstrate that CTOA can be used to characterize

SThe characteristic distance is called Al and r,_ in [121] and [118], respectively.
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Figure 2.2: Illustration of CTOA definition.

stable crack growth. Newman [90, 91], using a 2D elastic-plastic finite element

analysis, was able to simulate stable crack growth and predict residual strength

within 10% for the test configurations shown in Figure 2.1.

Recently, the CTOA fi'acture criterion has been extensively verified through

tests and analyses for various loading, geometry, and crack configurations u. Tests

on aluminum alloys [34, 94], 2D [93, 35, 30, 33], thin-shell [20, 23, 22], and 3D

[27, 29, 28] elastic-plastic crack growth analyses have been conducted to assess

the CTOA fi'acture criterion for aging aircraft applications. These studies will be

discussed in Chapter 3.

The CTOA fi'acture criterion is used in this study to characterize stable crack

growth in thin-sheet metallic materials. The definition of CTOA as suggested by

Newman [90] is adopted. For Mode-I only deformations, it is defined as (Fig-

ure 2.2):

a (2.2)
CTOA = 2 tan -s 2d

where 6 is the CTOD measured at a specific distance, d, behind the crack tip. For

mixed-mode problems, the opening angle is obtained fi'om the cross product of two

vectors:

CTOA = sin -1 Ilax bll
Ilallllbll (2.3)

where a and b are the vectors fi'om the crack tip to crack edges at a specific

distance, d, behind the crack tip.

2.4 Elastic-Plastic Crack Growth

Stable crack growth seems to be an inherent feature of elastic-plastic materials be-

cause of the occurrence of permanent plastic deformations during unloading [115].

This effect can be demonstrated by global energy dissipation or by the local resid-

ual plastic deformations. The energy dissipation effect on stable crack growth is

illustrated by considering the example used in [115]. Suppose two materials have

UMost of the test data are available from the Internet at irwin.larc.nasa.gov.
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Figure 2.3: Illustration of crack growth in nonlinear elastic and elastic-plastic ma-

terials.

the same uniaxial stress-strain curves; one is an idealized nonlinear elastic mate-

rial and the other is an elastic-plastic material. For cases without crack growth,

the same CTOA and strain concentration will occur in the two materials as illus-

trated in Figure 2.3, STAGE 0. As the crack propagates in the nonlinear elastic

material, deformation fields need to be readjusted and the same crack tip open-

ing profile would occur for the new crack tip location [115]. This is not the case

for the elastic-plastic material because a large part of the energy is consumed by

plastic dissipation with far less strain recovered during unloading. Thus, a smaller

CTOA is obtained after crack growth (STAGE 1). Further increase of the applied

loading is needed to open the crack (STAGE 2) and causes stable crack growth

in the elastic-plastic material. Fracture instability will occur as the crack reaches

a steady-state condition in which the crack continually advances without further

increase in load. If the analysis is performed under displacement control, then a

reduction in applied load is required to maintain a constant CTOA for continuous

crack growth. Hereafter, CTOA_ is the crack tip opening angle measured immedi-

ately after propagation, STAGE 1. CTOAa is denoted as the increase in crack tip

opening angle required to reach the critical value (CTOAc). Thus,

CTOA_ + CTOAb = CTOAc (2.4)

satisfies the fracture criterion for crack propagation, and the condition

CTOA_ = CTOA_ (2.5)

indicates the occurrence of fracture instability for the analysis under load control.

Another related factor for stable crack growth is the plastic wake effect caused

by the residual plastic deformations [90]. As the crack grows, the plastic zone

behind the crack tip unloads to an elastic state leaving the appropriate plastic

wake behind the advancing crack tip. This effect results in resistance to crack

tip opening as illustrated in Figure 2.4. The dashed curves in the plastic wake
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residual plastic deformation active plastic zone

Figure 2.4: Illustration of plastic wake effect caused by crack growth.

region show what the crack opening profile would have been if residual plastic

deformations had not been retained in the material behind the advancing crack

tip. This phenomenon is also essential for simulating the initiation of stable crack

growth associated with high fatigue stress prior to tearing [30].

It is of interest to note that a different density of residual plastic deformation

would develop as the crack propagates under plane stress compared to plane strain

conditions. Based on the Prandtl field together with an elastic sector following the

centered fan, Rice et al. [118, 117] have shown that asymptotic plastic strains for

quasi-static crack growth under plane strain conditions in elastic-perfectly plastic

materials are:

= F_9(0 ) ln(!) _'-+0 (2.6)
P

where (r, 0) is a local polar coordinate system with the origin at the crack tip

and F,9(O ) are functions determined from an asymptotic angular integration of

the plastic strain rate. No complete asymptotic solutions are available for plane

stress conditions, but only two types of plastic sectors can exist near the crack

tip; one is the centered fan and the other is constant stress [117, 86]. For the case

with the center fan sectors, Rice [115] shows that plastic strains under plane stress

conditions are:

_=aij(O) ln_(!) 0=0 _'-+0 (2.7)

where Gij are scalars from solutions with a centered fan on the 0 = 0 ray. By

comparing Equations (2.6) and (2.7), one finds that plastic strains on the 0 = 0

ray have a stronger singularity in plane stress than in plane strain. This observa-

tion gives a preliminary indication that higher residual plastic deformations may

occur under plane stress conditions leading to higher resistance to the opening of

a growing crack.

2.5 Link-up and Residual Strength Analysis with

CTOA Fracture Criterion

Since analyses based on the CTOA fracture criterion are direct simulations of real-

istic crack growth, multiple crack growth interaction and link-up are automatically
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Figure 2.6: Residual strength diagram under displacement control.

captured as the crack propagates. Residual strength of a damaged structure is also

obtained directly fi'om the crack growth data. For tests conducted under load con-

trol with the plastic zone well-confined by the elastic region, fracture instability

is reached when no further increase of the applied load is required to maintain

quasi-static crack extension. For tests under displacement control, the maximum

load carrying capacity of a structure occurs followed by a reduction in load during

continued crack growth. The residual strength diagrams corresponding to load

control and displacement control are illustrated in Figures 2.5 and 2.6, respec-

tively. Note that under displacement control, the load instability occurs before

Equation (2.5) is satisfied. By comparing Figures 2.5 and 2.6, one finds that the

load-crack extension curve up to residual strength is obtained under load control.

On the other hand, the curve after residual strength can be obtained fi'om the

displacement-control technique.
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2.6 Guidelines for Using the CTOA Fracture Cri-

terion

Guidelines for using the CTOA criterion to predict fracture behavior and residual

strength of built-up aircraft fuselages are presented below 3 for future reference.

The guidelines focus on (1) how to obtain a valid CTOA value from laboratory

fracture tests for a given thickness of thin-sheet metallic material, and (2) how to

correlate or fine-tune numerical analyses based on laboratory tests to predict the

fracture behavior and residual strength of complex structures.

1. Conduct tension tests to accurately describe the stress-strain behavior of the

material.

.

.

Conduct fracture tests on coupon specimens. Measure the CTOAc and record

crack growth data during stable tearing. The experimental CTOAc measure-

ments typically have a scatter band of 4-0.5 ° to 4-1.0 °. The material of the

specimen should be the same alloy, temper, and thickness as the material

of the complex structure. The specimen should be large enough to allow

significant crack growth prior to reaching residual strength.

Use thin-shell elastic-plastic finite element analyses accounting for 3D con-

straint effects developed at the crack tip 4 to simulate fracture behavior. Com-

pare the predicted load versus crack growth to the experimental data and

determine the value of CTOA_ that best correlates the experimental data

and numerical results. Note that:

• The characteristic distance, d, used in analyses should be the same as

the one used in experimental measurements.

,, Agreement of the CTOA_ values obtained independently from exper-

imental measurements and numerical analyses would greatly increase

the confidence in the chosen CTOA_ value.

4. Create a finite element model for the structure to be analyzed. Use the

previously determined CTOA_ value to predict the fracture behavior. The

model should have the same size and type of crack tip elements as the one

used in the coupon test correlation.

The validity of these guidelines as applied to fuselage structures will be examined

extensively through Chapters 3 and 4.

3These guidelines follow closely the recommendations made in [33, 29].

4One way to consider the 3D constraint effects in a thin shell analysis is to use

the plane strain core concept (see Figure 3.2).
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2.7 Summary

Various LEFM and EPFM versions of fl'acture mechanics methods to characterize

fracturing processes in thin-sheet metals were reviewed and critiqued in Section 2.2.

Among them, the CTOA fl'acture criterion with a 3D elastic-plastic analysis was

found to be a superior one because of its relative independence of the geometry of

the structure, the length of the crack, and the presence of multiple cracks.

Previous experimental, analytical, and numerical studies for the CTOA fl'acture

criterion were reviewed in Section 2.3. The definition of the CTOA was given in

Equation (2.2) for Mode-I only deformations and in Equation (2.3) for general

mixed-mode problems.

The CTOA-driven elastic-plastic crack growth was studied in Section 2.4. The

inherent feature of stable crack growth in elastic-plastic materials was discussed

using the energy dissipation and residual plastic deformation. Residual plastic

strains fl'om elastic-plastic crack growth under plane stress and plane strain con-

ditions were studied using the Prandtl field. Higher residual plastic deformations

were found under plane stress conditions. As a result, a higher fl'acture resistance

of a growing crack rnay occur under plane stress conditions. This behavior will be

further examined numerically in Chapter 3.

Analyses of link-up of multiple cracks and residual strength of damaged struc-

tures using the CTOA fl'acture criterion were discussed in Section 2.5. Finally,

guidelines for using the CTOA criterion calibrated fl'orn coupon tests to predict

fl'acture behavior of built-up aircraft fuselages were presented in Section 2.6.



Chapter 3

Residual Strength Analysis of a
Flat Panel with Self-Similar

Elastic-Plastic Crack Growth

Elastic-plastic crack growth simulations and residual strength prediction of fiat

panel coupon tests are studied in this chapter. The purposes of this chapter are

to:

1. further review and discuss some recent activities of using the crack tip open-

ing angle (CTOA) fl'acture criterion for aging aircraft applications,

2. model the fi'acturing processes in middle-crack tension (MT) specimens using

elastic-plastic, thin shell finite element analyses,

3. explore the need to incorporate the three-dimensional constraint effect to

characterize fl'acture behavior of thin-sheet metals, and

4. model the fl'acturing processes in thin-sheet specimens with multi-site dam-

age (MSD).

3.1 Introduction

Tests and numerical simulations have been performed to assess the CTOA fracture

criterion for predicting residual strength of aging aircraft. Laboratory tests were

conducted on fiat panels made of aluminum alloys [34, 94]. Numerical simulations

were conducted using two-dimensional (2D) [93, 35, 94, 30, 33], thin-shell [20,

23, 22], and three-dimensional (3D) [27, 29, 28] finite element elastic-plastic crack

growth analyses. We review these activities in a somewhat chronological order and

highlight the important findings of these studies below. The latest results are used

as a starting point for subsequent simulations in this study.

A series of fracture tests have been conducted using a 2024-T3 aluminum al-

loy for MT, CT, blunt notch, THCT and MSD specimens. Newman et al. [93]

21
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conducted tests on 0.05, 0.07, and 0.09 inch thick, 3.0 and 11.8 inch wide MT

and blunt notch specimens as well as 0.09 inch thick, 10 inch wide THCT spec-

imens. The blunt-notch specimen is similar to the MT specimen except that a

small hole is drilled at both ends of the saw cut. It is intended to assess the suit-

ability of elastic-plastic finite element analyses with the small-strain assumption

to model large-scale plasticity deformations. A good agreement between predicted

and measured load versus notch-tip displacements substantiates the assumption.

The critical values of CTOA (CTOAc) were measured for the MT and THCT

specimens to assert the specimen configuration independence of the fracture cri-

terion. The THCT specimen has a stress intensity factor solution like that of a

cracked, stif[_ned panel [91]. The measured CTOAc values showed higher angles at

crack initiation, but reached the same constant value after a small transition pe-

riod of crack growth. The agreement of CTOA_ between MT and THCT specimens

indicates that the CTOA fracture criterion is independent of specimen configura-

tion; this was further confirmed by a follow-up study with measurements from CT

specimens [35].

A 2D elastic-plastic finite element code, ZIP2D [88], and a 6.1 degree CTOA_,

computed at 0.01875 inch behind the crack tip, were used to simulate fracture

behavior of the MT specimens [93]. To model fatigue pre-cracking, cyclic loading

simulation was conducted prior to stable tearing analyses. Experimental and pre-

dicted results showed that a higher applied stress during the fatigue tests increased

the resistance of stable crack growth initiation. Predicted residual strengths under

plane stress conditions were within 4% of experimental results for 3.0 and 11.8 inch

wide MT specimens. Yet the plane stress analyses over-predicted crack extensions

prior to limit load while the plane strain analyses under-predicted crack extensions.

The above studies raised two important questions:

1. What is the governing mechanism that causes higher CTOA_ values during

crack initiation?

2. What is the governing mechanism that causes the discrepancy between 2D

predictions and test results?

Dawicke and Sutton [30] examined the higher values of measured CTOA_ ob-

served during crack initiation, i.e., question 1. Two independent techniques, op-

tical microscopy (OM) and digital image correlation (SIC) were used to measure

surface CTOAc during crack growth. The results of the two methods agreed very

well. Fatigue marker loads and a scanning electron microscope were used to exam-

ine the fracture morphology and sequences of crack front profiles. For specimens

under low magnitude of fatigue stress prior to tearing, crack surfaces underwent a

transition from fiat-to-slant crack growth. A schematic of the transition is shown

in Figure 3.1. During the transition period, the CTOA_ values were high and sig-

nificant tunneling occurred. After an amount of crack growth equal to about the

specimen thickness, CTOA_ reached a constant value. After crack growth equal

to about twice the thickness, crack tunneling stabilized. For specimens that were
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Figure 3.1: Schematicof fracture surfaceindicating transition from a fiat to a slant

crack plane (after [93]).

pre-cracked under a high magnitude of fatigue stress, a 45-degree, slant, through-

thickness initial crack was formed prior to tearing. During the crack initiation

period, the CTOAc values of specimens with high fatigue stress were lower than

the ones with low fatigue stress. But the same constant CTOAc value was observed

after crack growth equal to about the specimen thickness.

The discrepancy between 2D predictions and test results, i.e., question 2, was

thought to be related to the 3D constraint effect. Although thin-sheet structures

behave essentially in plane stress, the constraint due to the finite thickness of the

specimens can cause the regions local to the crack tip to approach plane strain

conditions [56].

To investigate the constraint effect, 2D and 3D analyses were conducted. In

the 2D analyses, a core of elements above and below the crack path were assigned

as plane strain while all other elements were assigned as plane stress. The plane

strain core concept is illustrated in Figure 3.2.

In their early attempt, Dawicke et al. [35, 94] used 2D finite element analyses

with a 6.0 degree CTOA_ computed at 0.02 inch behind the crack tip and a plane

strain core height equal to 0.2 inch to simulate fracture behavior with the constraint

effect. They showed that the use of a plane strain core was essential to accurately

model crack growth. The predicted residual strengths were within 2% for 3 and 12

inch wide, 0.09 inch thick MT specimens and within 4% for 6 inch wide, 0.09 inch

CT specimens. For 20 inch wide, 0.04 inch thick MSD specimens, 2D analyses with

a 5.1 degree CTOA_ showed excellent agreement of link-up and residual strength

between predictions [94] and test results [13].

Dawicke et al. [27, 29] further studied the constraint effect using 3D finite

element analyses with a 5.25 degree CTOA_ computed at 0.04 inch behind the
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Figure 3.2: Schematic of the plane strain core.

crack tip. The 3D analyses successfully simulated fracture behavior of 2.0, 4.0,

6.0, and 8.0 inch wide CT specimens, 1.2, 3.0, 6.0, 12.0, 24.0, and 60.0 inch wide

MT specimens, and 12.0 inch wide MSD specimens made of 0.09 inch thick, 2024-

T3 aluminum alloy. A plane strain core height of 0.12 inch was required for 2D

analyses to match the measured results and the 3D fracture predictions.

In the following, the MT and MSD tests are studied. The FRANC3D/STAGS

program is used to simulate fracture behavior and predict residual strength using

the guidelines derived from the above 2D and 3D studies.

3.2 Experimental Procedures and Test Configu-

rations

Fracture tests of MT specimens were conducted by the Mechanics of Materials

Branch at NASA Langley Research Center [34, 27, 29]. The test specimens were

made of 0.09 inch thick 2024-T3 aluminum alloy. All specimens were fatigue pre-

cracked in the L-T orientation with a low stress level that results in a stress inten-

sity factor range of AK = 7 ksi_. For specimens with a single crack, different

widths of panels equal to 3 inch, 12 inch, and 24 inch with a crack-length to width

ratio equal to 1/3 were tested (Figure 3.3). For cases with multiple cracks, only

the 12 inch wide specimens with two to five near collinear cracks as illustrated in

Figure 3.4 were tested. All tests were conducted under displacement control with

guide plates to prevent out-of-plane buckling. Both OM and DIC techniques were

used to measure the CTOAc during stable crack growth [34]. Results for MT and

CT specimens are shown in Figure 3.5. The CTOAc rapidly reaches a constant
value with a scatter band about 4-1.0 °.
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Figure 3.5: Surface measurements of CTOAc (after [29]).

3.3 Numerical Simulations of MT Specimens

Fracture processes of MT specimens were simulated first. To investigate panel

size effects, numerical simulations of 60 inch wide panels with the same crack-

length-to-width ratio were also performed. Elastic-plastic finite element analyses

based on incremental flow theory with the von Mises yield criterion and the small

strain assumption were used to capture the active plastic zone and the plastic wake

during stable crack propagation. A piecewise linear representation was used for

the uniaxial stress-strain curve for 2024-T3 aluminum (Figure 3.6). The CTOAc

used in this study was 5.25 degrees measured 0.04 inch behind the crack tip. This

particular CTOA value was provided by Dawicke and Newman [27, 29] based on

3D simulations of CT specimens 1. Upon satisfaction of the fi'acture criterion,

nodal release and load (or displacement) relaxation techniques were employed to

propagate the crack. Because of the double symmetry of the geometry and loading,

only one quarter of the specimen with imposed symmetry boundary conditions

was modeled. Out-of-plane displacements were suppressed. Displacement-based

four-noded and five-noded quadrilateral shell elements having C 1 continuity were

used [112]. These elements are intended to model thin shell structures for which

transverse shear deformation is not important. Each node of the element has six

degrees of fi'eedom including three translations and three rotations. A special five-

noded shell element, formulated by combining two four-noded elements and using

linear constraint along the edge to eliminate the dependent node, was used to

1As noted by Dawicke and Newman [29], the fi'acture behavior of the CT spec-

imen is more sensitive to small changes in CTOA_ than the MT specimen; thus

the CT specimen is more suitable to correlate predicted and measured results.
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Figure 3.6: Piecewise linear representation of the uniaxial stress-strain curve for

2024-T3 aluminum.

transition from locally refined zones around the crack path to a coarse mesh away

fi'om the crack.

A convergence study was conducted to determine the sensitivity of the predicted

residual strength to the element size along the crack extension path. Three meshes

for the 24 inch wide panel were created with crack tip element sizes of 0.04 inch,

0.02 inch, and 0.01 inch. For all crack growth and residual strength analyses,

the CTOA was evaluated at 0.04 inch behind the crack tip to be consistent with

experimental measurements. A finite element mesh with 0.04 inch square crack

tip elements for the 24 inch wide panel is shown in Figure 3.7. Predicted crack

growth results for cases with 0.04 inch and 0.02 inch crack tip elements as well as

predicted residual strengths for all three cases are shown in Figure 3.8. Although

some discrepancy was observed at the early stage of stable tearing, the predicted

results exhibited little influence of mesh size after a relatively small amount of

stable crack growth. More importantly, the predicted residual strength was very

insensitive to crack tip element size. Thus, all the remaining meshes used in this

study had 0.04 inch crack tip elements.

3.3.1 Numerical Results

Figure 3.9 shows two predicted crack opening profiles for the 24 inch wide panel.

The angles were computed immediately after propagation (i.e., CTOA_, see Fig-

ure 2.3) with relaxation procedures completed and before increasing the applied

displacement. The two CTOA_ values correspond to (1) the angle after the first

increment of crack growth, and (2) the angle after the specimen reaches its residual

strength. As shown in the figure, CTOA_ is much smaller than the critical angle

after the first crack growth increment. This clearly demonstrates the permanent

plastic deformation effects on stable crack growth in the elastic-plastic material

(@ section 2.4). As the crack propagates, CTOA_ increases. Since the analyses

were conducted under displacement control, the CTOA_ at residual strength is less
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Figure 3.8: Convergence study: predicted crack growth and predicted residual

strength for 24 inch wide panel with different crack tip element sizes.
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Figure 3.9: Crack opening profiles and CTOA_ after the first crack growth incre-

ment and after reaching the residual strength for 24 inch wide panels.

than, but approaching its critical value.

Comparisons between numerical results and experimental measurements for

the applied stress versus half crack extension are shown in Figure 3.10. Results of

predicted residual strength are comparable to experimental measurements, but as

the width of the panel increases, the relative difference between experimental mea-

surements and numerical predictions increases. Figure 3.11 depicts the predicted

plastic zone as the specimens reach their ultimate strength. Two distinct phenom-

ena are observed. For small specimens, plastic zones reach the fl'ee edge and the

limit load is attained due to net section yielding. In contrast, for large specimens,

plastic zones are well-confined by the elastic region and residual strength is reached

near the fl'acture instability of the specimens.

3.3.2 Discussion

As shown in Figure 3.10, the relative difference in residual strength between exper-

imental and numerical results increases as the width of the panel increases. This

discrepancy is believed to be due to the three-dimensional nature of the stresses

around the crack tip, a result of constraint effects due to the finite thickness of

the panels [56, 31]. Numerical results using plane strain, plane stress with a plane

strain core height (see Figure 3.2) equal to 0.12 inch, and three-dimensional finite

element analyses obtained fl'om [27, 29] were studied to further demonstrate con-

straint effects on residual strength predictions. Predicted results shown in Table 3.1

and Figure 3.12 suggest that:

• thin shell finite element analysis, behaving essentially in plane stress, tends

to over-predict the residual strength as the width of the panel increases;

• plane strain analysis over-predicts the residual strength of small specimens,

but under-estimates it for large specimens;
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Figure 3.10: Comparisons between experimental measurements and numerical pre-

dictions of applied stress versus half crack extension for various sizes

of specimens.
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32

Table 3.1: Comparisons of Residual Strength Predictions of

(unit: ksi)

plate width thin shell plane e plane e core I

3 in. 34.0 38.0 33.6

12 in. 30.7 32.7 30.7

24 in. 29.6 26.3 29.1

60 in. 28.1 16.6 26.7

3D

34.3

30.8

29.1

26.3

MT

l exp.

34.5

31.3

28.4

N/A

Specimens

o,,-_

40

35

30

25

--O- thin shell
plane strain

--c- plane strain core

--A- 3D .

3 12 24 60

Plate Width (in.)

Figure 3.12: Predicted results of thin shell, plane strain, plane stress with a plane

strain core, and 3D analyses compared with experimental measure-

nlents.

,, 2D plane stress analysis with a plane strain core and 3D analysis properly

account for constraint effects. The predicted results follow the trend of ex-

perimental measurements even for wide panels.

The cross over between plane stress and plane strain in predicting residual

strength as the specimen size increases is an interesting topic. Based on the pre-

dicted plasticity distribution in Figure 3.11, the net section yielding mechanism

seems to dominate the residual strength prediction of small specimens. This may

explain why the plane strain analysis predicts a higher residual strength for small

specimens because the effective yield stress in plane strain is larger than that in

plane stress. Thus, a further increase of remote stresses under plane strain con-

ditions is needed for specimens to reach the point of net section yielding. For

larger specimens, residual strength is governed by stable crack growth and fl'ac-

ture. As one would expect fl'om the thickness effects on Kc in LEFM [9], materials
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in plane stress have higher fracture toughness than materials in plane strain. Re-

cent micromechanics-based, 3D analysis of ductile crack growth in a thin plate

with a Gurson-type model also showed that, although the crack growth resistance

at first increases with increasing plate thickness, the resistance to crack growth

decreases after a small amount of crack extension [84].

For CTOA-driven ductile crack growth, stresses and strains under plane stress

and plane strain conditions have not been studied in sufficient detail to clarify the

issue. A possible cause of higher crack growth resistance in plane stress may be

related to the residual plastic deformation effects. Based on asymptotic solutions

for cracks growing in an incompressible elastic-perfectly plastic material under

Mode I loading (Equations (2.6) and (2.7)), larger residual plastic deformations

would occur under plane stress than plane strain conditions leading to higher crack

growth resistance.

3.4 Numerical Simulations of Specimens with Mul-

tiple Cracks

Numerical simulations of tests with multiple cracks using the CTOA fracture cri-

terion are straightforward extensions of single crack specimen simulations. The

same fracture criterion (CTOAc = 5.25 degrees measured 0.04 inch behind the

crack tip) was used to simulate stable crack growth and the link-up of multiple

cracks, and to predict the residual strength. No supplementary criterion is needed.

Multiple crack test configurations as shown in Figure 3.4 were modeled and the

fracture processes were simulated. Note that the symmetry conditions along the

vertical central line of the specimens (see Figure 3.4) are no longer valid due to

the various lengths of fatigue pre-cracks; thus, at least one half of the specimen

needs to be modeled. A finite element mesh for test configuration b is shown in

Figure 3.13. Mesh patterns around the multiple cracks are similar to those of the

single crack models.

3.4.1 Numerical Results and Discussion

Numerical results and experimental measurements for the applied stress versus

half crack extension for test configuration b and d are shown in Figure 3.14. Two

distinct applied load versus crack growth history curves are predicted. For test

configuration a, b, and c, link-up of cracks happens before the specimens reach their

residual strength. For test configurations d and e, the limit load is attained before

link-up. These numerical predictions agree with observations from the fracture

tests.

Again, plastic deformation plays an important role in the fracture process.

Figure 3.15 shows the plastic zone evolution of test configuration b during stable

crack growth. The inherent residual plastic deformations during crack growth are

clearly demonstrated through the deformed shapes. Figure 3.16 summarizes the
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Figure 3.13: Finite element mesh for the test configuration b (12 inch wide speci-

men with two cracks).
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Figure 3.14: Predicted applied stress versus crack extension for test configuration

b and d.
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Figure 3.15: Crack opening profile(s) and plastic zone evolution of test configu-

ration b during crack growth: (1) at the first increment, (2) before

link-up, (3) after link-up, and (4) reaching the residual strength.

relative difference between predicted results and experimental measurements. The

predicted residual strength of all five MSD simulations agrees very well (within 3%)

with experimental data. The predicted link-up load is comparable to experimental

measurements, but the difference is larger than that for the residual strength.

Reasons for the discrepancy may be related to the dimculty in measuring link-up

load during the fi'acture tests.

It is of practical importance to characterize the reduction in residual strength

caused by MSD [50]. Figure 3.17 plots numerical predictions of residual strength

versus lead crack length for cases with and without small cracks. A loss of residual

strength due to the presence of multiple small cracks is observed.

3.5 Summary

Stable crack growth and residual strength prediction for the fiat panel tests were

performed. The CTOA criterion was used to characterize the elastic-plastic crack

growth in thin-sheet metals. The major findings of the fiat panel study are:

1. Two distinct failure mechanisms are observed for MT specimens. For small

specimens, plastic zones reach the fi'ee boundary and the limit load is attained

due to net section yielding. For large specimens, plastic zones are well-

confined by the elastic region and residual strength is reached due to the

fi'acture instability of the specimens.

2. Constraint effects caused by the finite thickness of the plates provide a reason-

able explanation for the increase of the relative difference between predicted

residual strength fi'om thin shell analyses and experimental measurements as

the panel size increases.
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3. Predicted link-up load and residual strength are in good agreement with

experimental measurements for the panels with multiple cracks. A loss of

residual strength due to the presence of multiple small cracks is observed.

4. The CTOA fracture criterion, combined with elastic-plastic shell finite ele-

ment analyses, proves to be a rational and rigorous simulation tool to charac-

terize stable crack growth and to predict the residual strength of fiat panels

with single and multiple cracks.



Chapter 4

Residual Strength Analysis of

Fuselage Structures with
Self-Similar Crack Growth

In this chapter, the crack tip opening angle (CTOA) fl'acture criterion obtained

fl'om coupon tests is used to predict fl'acture behavior and residual strength of

built-up aircraft fuselages that are subjected to widespread fatigue damage (WFD).

Two fuselage models are investigated. The first example is a generic narrow body,

lap-jointed fuselage with stringers and fl'ames but without tear straps. This rel-

atively simple, built-up configuration is used to demonstrate the ability of the

FRANC3D/STAGS system to predict residual strength of fuselage structures sub-

jected to WFD. The second example is a detailed analysis of a wide body, lap-

jointed fuselage panel with tear straps, stringers, stringer clips, and fl'ames. The

analyses focus on simulations of single crack growth and multi-site damage (MSD)

in a fuselage panel conducted in a full-scale, wide body, pressure test fixture [49, 50].

This example is intended to validate the analysis methodology by directly com-

paring numerical predictions with experimental measurements on actual fuselage

structures.

4.1 Demonstration Example: A Generic Narrow

Body Fuselage Panel

A relatively simple built-up narrow body fuselage configuration was modeled. The

example demonstrates the analysis capability to predict the residual strength of a

pressurized fuselage, subjected to WFD and corrosion damage [25, 24]. The prob-

lem chosen for analysis was a three stringer wide, three fl'ame long fuselage panel.

The panel section had a radius of curvature of 72 inches. It contained a lap joint at

the central stringer. The lap joint was a typical three row configuration with 3/16

inch diameter countersunk-head rivets. The other two stringers were spot-welded

to the skin. The upper and lower skins were made of 0.04 inch thick, 2024-T3

38
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Figure 4.1: Dimensions of generic narrow body panel for demonstration example.

aluminum alloy. The stringers and fi'ames were made of 7075-T6 aluminum alloy.

Frames were simply connected to stringers by rivets. The panel configurations are

shown in Figures 4.1 and 4.2. The fi'ame and stringer dimensions are shown in

Figure 4.3.

4.1.1 Numerical Model

All structural components including skins, stringers, and fi'ames were modeled by

shell elements. Each node of a shell element has six degrees of fi'eedom. A piecewise

linear representation was used for the uniaxial stress-strain curves for 2024-T3

and 7075-T6 aluminum alloys (see Figures 4.4 and 4.5). Symmetric boundary

conditions were imposed on all the boundary edges to simulate a cylinder-like

fuselage structure. Pressure loading was applied on all the external skins.

Both geometric and material nonlinearities were included in the analysis. The

former captures the out-of-plane bulging deformation and the latter captures the

active plastic zone and the plastic wake during stable crack propagation. The

nonlinear solution algorithm consists of Newton's method. Large rotations were

included in the nonlinear solution by a co-rotation algorithm applied at the element

level [96]. The Riks arc-length path following method was used to trace a solution

past the limit points of a nonlinear response [122, 113].

Rivets were modeled by elastic-plastic spring elements that connect finite ele-

ment nodes in the upper and lower skins. Each rivet was modeled with six degrees

of freedom, corresponding to extension, shearing, bending and twisting of the rivet.
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The stiffness of each degree of fl'eedom was defined by prescribing a force-deflection

curve. The axial, flexural, and torsional stiffnesses of the spring element were com-

puted by assuming that the rivet behaves like a simple elastic rod with a diameter

of 3/16 inch. The elastic shear stiffness of the rivet was computed by the following

empirical relation developed by Swift [136]:

ED
= (4.1)

[A+ C(D/tl +

where E is the elastic modulus of the sheet material, D is the rivet diameter, ts and

tu are the thicknesses of the joined sheets, and A = 5.0 and C = 0.8 for aluminum

rivets. The initial shear yielding and ultimate shear strength of the rivets were

assumed to occur at load levels of 510 lb and 725 lb, respectively. Once a rivet

reaches its ultimate strength, it will break and lose its load carrying capacity. The

force-deflection curve shown in Figure 4.6 for shearing is intended to represent

empirically the net shear stiffness of a rivet-joined sheet connection, accounting

for bearing deformations and local yielding around the rivet [136, 150].

The critical crack tip opening angle (CTOAc) was used to characterize elastic-

plastic crack growth and to predict residual strength. The CTOAc used in this

example was 5.7 degrees measured 0.04 inch behind the crack tip with a plane

strain core height equal to 0.08 inch 1. Six different crack configurations with

various lengths of lead and MSD cracks were studied. The initial configurations

prior to crack growth were:

1. a 7.14-inch lead crack,

2. a 7.14-inch lead crack with 0.025 inch MSD cracks emanating from both sides

of a fastener hole,

1Since no experimental crack growth data were available, this particular CTOA_

value was estimated based on the 5.25 degrees used in 0.09 inch thick, 2024-T3

bare material in Chapter 3. The plane strain core height was assumed to be twice

the sheet thickness.
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Figure 4.7: Crack configurations with a 10-inch initial lead crack and MSD (exter-

nal view).

3. a 7.14-inch lead crack with 0.046 inch MSD cracks emanating from both sides

of a fastener hole,

4. a 10-inch lead crack,

5. a 10-inch lead crack with 0.025 inch MSD cracks emanating fl'om both sides

of a fastener hole, and

6. a 10-inch lead crack with 0.046 inch MSD cracks emanating fl'om both sides
of a fastener hole.

The lead crack was located symmetrically about the central fl'ame line. The MSD

pattern was symmetric about the lead crack at the 3 rivets in fi'ont of the lead

crack. The lead and MSD cracks were located along the upper rivet row in the

upper skin of the joint. The crack configurations with a 10-inch initial lead crack

are shown in Figure 4.7. Since rivet holes were not modeled explicitly in the finite

element model, a small crack with a length equal to the rivet diameter plus the

MSD length was used to model the MSD crack.

A mesh pattern with 0.04 inch crack tip elements was used. This pattern is

similar to the one used in the flat panel simulation (ca*'.Figure 3.7). A finite element

mesh for the model is shown in Figures 4.8 and 4.9. In addition to the effects of

WFD, material thinning due to corrosion damage was also studied. The effect of

material thinning was modeled by a uniform reduction in thickness of the upper

skin at the lap joint in the two center bays.
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Figure 4.8: Finite element mesh for demonstration example.
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Figure 4.9: Detailed mesh around crack path for demonstration example.



45

4.1.2 Numerical Results and Discussion

Figure 4.10 shows the predicted results of the operating pressure loading versus the

total crack extension for all the cases conducted in this study. Predicted residual

strengths summarized in Figure 4.11 indicate:

The MSD cracks significantly reduce the residual strength of the fuselage

panel. A 21.8 to 28.0% loss of residual strength due to the presence of small

MSD is observed.

A 10% uniform thickness degradation due to corrosion damage reduces the

residual strength by 3.4 to 9.0%. The coupling of WFD and corrosion damage

leads to the most severe damage scenario.

In general, increasing the lead and MSD crack lengths reduces the residual

strengths. However, for the cases with a 10-inch initial lead crack, residual

strength seems to be relatively insensitive to the MSD crack sizes.

The deformed structure at residual strength for the case with a 10-inch initial

lead crack but without MSD and corrosion damage is shown in Figure 4.12. Out-

of-plane bulging is observed in the skin crack edges. Because of the stiffness of

the stringer, the bulging at the lower crack edge is much smaller than the oppos-

ing edge. The unsymmetric out-of-plane bulging thus leads to an anti-symmetric

bending deformation field at the crack tips [108].

Figures 4.13 and 4.14 depict the predicted plastic zones for the cases with a

10-inch initial lead crack as the panel reaches its residual strength. As shown

in Figure 4.13, the evolving plastic zones are well-confined by the elastic regions

within the frames. For the case without MSD, dominant plastic zones accom-

panying the lead crack tips are observed. For the case with MSD, plastic zones

are developed at the multiple crack tips. The plasticity distributions are highly

influenced by the multiple crack interactions.

4.2 Validation Example: A Generic Wide Body

Fuselage Panel

Full-scale pressurized panel tests described in [49, 50] were simulated. The tests,

funded by the Federal Aviation Administration (FAA), and performed by the Boe-

ing Commercial Airplane Group, were intended to characterize crack growth in a

generic wide body, lap-jointed fuselage configuration, subjected to WFD. Detailed

analyses using the FRANC3D/STAGS program were conducted to validate the

analysis methodology. Stress distributions were compared with strain gage read-

ings. Predicted stable crack growth and residual strength results were compared

with experimental measurements.



46

2O

10

_ 5'

©

0
0

2O

15

10

_ 5'

©

0
0

-- [] -- No MSD

-- zx -- 0.025 in. MSD

-- o -- 0.046 in. MSD

1 2 3 4 1 2 3

Total Crack Extension (inch) Total Crack Extension (inch)

(a) (b)

4

15

_ lO

©

0
0

15

_ lO

•_ 5

©

0
01 2 3 4 1 2 3

Total Crack Extension (inch) Total Crack Extension (inch)

4

(c) (a)

Figure 4.10: Predicted operating pressure versus total crack extension for the

demonstration example: (a) 7.14-inch initial lead crack, (b) 7.14-inch

initial lead crack with corrosion damage, (c) 10-inch initial lead crack,

and (d) 10-inch initial lead crack with corrosion damage.



47

2o

_18

= 16

-_ 14

12

10
7 8 9 10

Initial Lead Crack Length (inch)

[] No MSD

ix 0.025 in. MSD

o 0.046 in. MSD

• No MSD; corrosion

• 0.025 in. MSD; conosion

• 0.046 in. MSD; conosion

curve fit

Figure 4.11: Predicted residual strength versus initial lead crack length.

Figure 4.12: Deformed shape of the demonstration example (pressure = 15.3 psi,

magnification factor = 5.0).



48

::..::.::,.,7,.... ............................

...........::: .........:.........................................._i:i:!i:::'.................:ii......................_ _

Effective Stress (ksi)

60.0 ({_u)

53.0

46.0

39.0 ((_y)

Figure 4.13: Predicted plastic zones for 10-inch initial lead crack without MSD

(pressure = 15.3 psi, magnification factor = 5.0).

lead

Effective Stress (ksi)

60.0 (0 u)

53.0

MSD crack tips

i : : : 46.0

39.0 (_y)

Figure 4.14: Predicted plastic zones for 10-inch initial lead crack with 0.025 inch

MSD (pressure = 11.3 psi, magnification factor = 5.0).



49

Figure 4.15: Generic narrow and wide body test fixtures (after [82]).

4.2.1 Full-Scale Fuselage Panel Testing

Two generic pressure test fixtures were fabricated by the Boeing Commercial Air-

plane Group. One fixture had a radius of curvature of 74 inches to match narrow

body airplanes and the other had a radius of curvature of 127 inches to match wide

body airplanes. The test fixtures are shown in Figure 4.15. One end of each fixture

was mounted in a rigid fl'amework and the other on rollers to allow longitudinal

displacement. Removable test sections were inserted in cutouts in the fixtures.

Tests were conducted under pressure loading only, using air as the pressurizing

medium. The full-scale fuselage panel tests investigated in this section were per-

formed on the wide body pressure test fixture. A brief overview of the panel tests
is described below. More information about the fixtures and tests can be found in

[82, 85, 49, 50].

Two identical curved lap-jointed panels were fabricated. The test panels were

designed to simulate typical wide body fuselage crown structures consisting of

bonded tear straps and floating fl'ames connected to hat section stringers with

stringer clips. Skins and tear straps were made of 0.063 inch thick, 2024-T3 clad

aluminum alloy. Stringers, fl'ames, and stringer clips were made of 7075-T6 clad

aluminum alloy. The skins were joined by the lap joints. The joint was a typ-

ical three row configuration assembled using standard 3/16 inch diameter, 100 °

countersunk-head rivets. The tear straps were hot-bonded to the skins at each

fl'ame station. The outer and inner tear straps were overlapped above the lap

joint. The dimensions of the panels are shown in Figures 4.16, 4.17, and 4.18. The

dimensions of fl'ames, stringers, and stringer clips are shown in Figures 4.19 and

4.20.

A five-inch initial saw cut was inserted along the upper rivet row in the outer

skin. For the panel with MSD cracks, small sawcuts were inserted in the outer

skin after the rivet holes had been drilled, but prior to the application of the fay

sealant and rivet installation. The panels were subjected to pressure cycling until

the length of the crack reached about two fl'ame bays. The central fl'ame was

then cut and the residual strength tests were conducted. Rosette strain gages were

installed back-to-back on the skins and tear straps in the vicinity of the lap joint.
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Figure 4.16: Validation example: test panel dimensions.
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4.2.2 Numerical Model

All structural components including skins, stringers, and frames were modeled

by displacement-based four-noded or five-noded quadrilateral shell elements [113,

112]. To analyze the panel tests with reasonable computer resources and sufficient

accuracy, a global-local approach was used. Figure 4.21 shows the typical finite el-

ement meshes for the two hierarchical modeling levels employed in the simulations.

A 12-stringer-bay wide and 5-fl'ame-bay long panel, which is about the size of the

test panel, was modeled at the global level. A lxl bay stiffened panel was modeled

at the local level. The local model differed fl'om the global model in the finite

element mesh density and the detailed geometric modeling of the cross sectional

shapes of stringers and fl'ames.

Pressure loading was applied on all the external skins. Symmetric boundary

conditions were imposed on all the boundary edges of the global model to simulate

a cylinder-like fuselage structure. Uniform axial expansion was allowed at one

longitudinal end. On this boundary edge, an axial force equal to (PR/2) • L was

assigned where P is the applied pressure, R is the radius of the panel, and L is

the arc-length of the edge. The kinematic boundary conditions (displacements and

rotations) applied along the boundaries of the local model were extracted fl'om the

global model results. In addition to these kinematic constraints, the local model

was also subjected to internal pressure.

A piecewise linear representation was used for the uniaxial stress-strain curves

for 2024-T3 and 7075-T6 aluminum alloys (see Figures 4.22 and 4.23). Similar to

the demonstration example, rivets were modeled by elastic-plastic spring elements.

The shear force-deflection curve for the rivet is shown in Figure 4.24. Since no

special adhesive elements were available in the STAGS element library, the adhesive

bond between skin and tear strap was also modeled with spring elements. The shear

stiffness for the springs was computed based on an effective area of the adhesive

with [128]:

If adhesive = Aef f

+ (3/s)(tl/G +
(4.2)

where Aeff is the bond area being lumped at the finite element nodal connection,

G is the elastic shear modulus of the sheet material, G_ is the elastic shear modulus

of the adhesive, ts and tu are the thicknesses of the bonded sheets, and t_ is the

thickness of the adhesive bond. Because no adhesive tests were conducted, the

material properties of adhesive, G_ and t_, were obtained from the experimental

results in [135]. The maximum shear deflection of the adhesive bond was assumed

to be 0.001 inch. Similar to the rivet spring, once the adhesive spring reaches

its ultimate strength, it will break and lose its load carrying capacity. The force-

deflection curve for shearing is shown in Figure 4.25. The axial stiffness of the

adhesive spring was derived fl'om the shear stiffness. The torsional and flexural

stiffnesses of adhesive were assumed to be negligible.

Both geometric and material nonlinearities were used in the analysis at the
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Figure 4.21"Global and local finite elementmodels.
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global and local modeling levels. The global shell model captures the overall non-

linear response of the stiffened, curved, pressurized structure. The local shell model

provides the detailed deformation and stress field near the crack tips to compute

the fi'acture parameters (e.g., CTOA) that control stable crack growth.

4.2.3 Determination of CTOAc

Flat panel tests were conducted by the Boeing Commercial Airplane Group to

obtain material properties for fatigue and fi'acture analysis of the curved fuselage

panels. Four, 48 inch wide, 80 inch long, 0.063 inch thick middle crack tension

(MT) specimens were tested. The flat panel specimens were made fi'om the same

aluminum sheet used for the skin of the curved fuselage panels. A constant ampli-

tude cyclic loading was applied to propagate an initial sawcut. After the fatigue

crack growth, a residual strength test was conducted under a monotonically in-

creasing load. The test matrix prior to the residual strength test is summarized

in Table 4.1. Visual crack extension measurements were taken. Surface CTOAc

was measured for Specimen 2024_FAA_TL3 during the residual strength test. Nine

values were obtained and the mean of the measured critical angles was about 5.5

degrees with a scatter band about 4-1.0 °.

The value of CTOAc used in the residual strength analysis of the fuselage panels

was determined by finding an angle within the scatter band of the CTOA_ mea-

surements that best correlates with the observed stable crack growth and residual

strength of the coupon tests. The FRANC3D/STAGS program was used to sim-

ulate fi'acture behavior of the MT specimens. A finite element mesh modeling a

quarter of the specimen with a crack tip element size of 0.04 inch and a half plane

strain core height equal to 0.08 inch is shown in Figure 4.26. The plane strain core

was used to capture the three-dimensional (3D) constraint eIt?cts developed at the

local crack tip [94, 31, 56]. The half core height was about the thickness of the

specimen.
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Table4.1: Test Matrix for MT Specimens(after [49])

SpecimenID half initial crack half final fatigue crack Gfatigue

(inch) (inch) (ksi)

2024_FAA_TL3 2.0 8.0 8.0

2024_FAA_TL4 2.0 5.5 16.0
5.5 8.0 8.0

2024_FAA_TL5 5.0 12.0 12.0

2024_FAA_TL6 2.0 8.0 7.0

R

0.1

0.1

0.1

0.5

,l-- 24 inches ---p

ii

ill

._. .-

---_--, SSSSS_SS'_SSS_SSSS>SS_>S5_ss_ss_ss,_ss:

40 inches

: ±
half plane strain

core height

q _-0.04inch

Figure 4.26: Finite element mesh for a quarter of 48 inch wide MT specimen.
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Figure 4.27: Predicted applied stress versus stable crack growth for 48 inch wide

MT specimen (half plane strain core height = 0.08 inch).

Figure 4.27 compares the predicted stable crack growth results to the exper-

imental measurements. The CTOAc of 4.5 degrees best correlates the predicted

and measured residual strengths. However, it under-estimates the applied stress

at the early stage of stable crack growth. The 5 and 5.5 degree critical angles give

a better correlation for the early stable crack growth, but over-predict the residual

strength by 8.5% and 14.3%, respectively.

The effect of the 3D constraint zone, i.e., the height of the plane strain core, on

stable crack growth and residual strength prediction was further investigated. Note

that in general, a change of the plane strain core height requires a dill>rent value

of CTOAc to correlate the predicted and measured residual strengths. Figure 4.28

shows the core height ett>cts on the stable crack growth prediction. A slightly

better correlation for the early growth is observed by increasing the plane strain

core height.

The discrepancy between predicted and measured stable crack growth at the

early stage of tearing might relate to the residual plastic deformation left by the

fatigue crack growth. This ett>ctively increases the crack opening resistance during

early stable crack growth [30]. The plastic wake ett>ct on stable crack growth and

residual strength analysis is further discussed in Section 4.2.5.

4.2.4 Numerical Results: Comparison with Strain Gage

Strain gage comparisons were made to verify predicted stress distributions. The

strain gage readings were recorded during fatigue and residual strength tests. The

records as the panels reach their residual strengths are of primary interest in this

study. The corresponding damage configurations are:
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Figure 4.28: Effect of plane strain core height on predicted stable crack growth for

48 inch wide MT specimen.

1. a 38.2 inch long crack with a severed central fi'ame for the panel without

MSD cracks, and

2. a 41.7 inch long crack with a severed central fi'ame for the panel with MSD

cracks.

The ultimate pressure loadings are 9.4 psi and 7.5 psi, respectively. The loca-

tions of strain gages and the damage configurations are illustrated in Figure 4.29.

Five back-to-back strain gage rosettes are numbered for the purpose of compari-

son. Because similar trends for stress distributions were observed for both damage

configurations, only detailed strain gage comparisons for the panel without MSD

cracks are described below.

Nonlinear stress analyses at the global and local modeling levels were per-

formed. Figure 4.30 shows the overall deformed structures at both levels. Con-

vergence studies were conducted to ensure accuracy of deformations and stress

distributions. Figure 4.31 shows three finite element discretizations, G1, G2, and

G3, used at the global modeling level. The mesh density around the gage loca-

tions was progressively refined fi'om global model G1 to G3. The predicted hoop

stress distributions compared to strain gage readings are shown in Figures 4.32

and 4.33; the predicted results converge quickly. The predicted membrane hoop

stresses agreed well with experimental measurements. The predicted bending hoop

stresses were comparable to experimental measurements as one refined the finite

element meshes.

Two discretizations, L1 and L2, were performed at the local modeling level

(Figure 4.34). The mesh density in the local model L1 was about the same as the

corresponding region in the global model G3. The purpose is to ensure transition
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Figure 4.30: Deformed structures of the validation example at global and local

modeling levels (pressure = 9.4 psi, crack length = 38.2 inch, magni-

fication factor = 5.0).
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LocalModel,L1 LocalModel,L2

Figure 4.34:Two meshdiscretizationsat the local modeling level.

accuracyof the hierarchical modeling. Predicted hoop stressdistributions fi'om
local model L1 agreedwell with global model predictions and experimentalmea-
surements(Figures4.35and 4.36). The other discretization, local modelL2, had a
muchhighermeshdensity,which is suitable for stablecrack growth analyses.The
results fi'om local model L2 disagreedwith the rest of numerical predictions and
experimentalmeasurements(Figures 4.35and 4.36). In particular, the predicted
membranehoop stressesweremuch lower than thoseobserved.

The discrepancyis related to the idealized representationof the two-noded
springelementfor the rivet connectionin the finite elementmodel [150,141]. The
single point connectionresults in unrealistic distortion of the surrounding shell
elements. The local distortion causespremature yielding of the shell elements
and reducesthe load transfer fi'om sheetto rivet. This artificial distortion of the
shell elementsis discretization-dependent[141,pp. 318 327]. Refining the mesh
capturesthe local artificial distortion better, but makesthe comparisonto strain
gagereadingsworse[150].

Two modeling idealizationsare proposedto avoid this artificial effect. Oneis
to faithfully representthe geometry of the rivets and their interferencewith the
sheets.This will considerablyincreasethe required computational resourcesand
may not be simpleto implement in thin-shell elastic-plasticcrackgrowth analyses.
The other approachis to generatedistributed connectionsbetweenthe two-noded
spring elementand the surrounding shell elements[150]. The load distribution
canbe accomplishedby defining rigid links, stiff' spring elements,or least-squares
loading conditions that connect the rivet-spring node to the surrounding shell-
elementnodes. Care must be taken while defining the area in the shell elements



67

inner skin outer skin

x_k 4A 3A , 2A 1A /
I I |1' I I I - - ,. I

• /4 4B 3B _ I[-'-]l . 2B 1B _kouter tear strap
tuner tear strap ,t__.3, ,t__.3,

O strain gage measurement

.... Model L1

......... Model L2

Model G3

40

_. 30

2o

O
O

10

0
S-2R/4L

!
rdA

2_.. \

S-3R/3L

Stringer Location

S -4R/2L

50 2B--
O

.-. 40

30

O
O

20

10
S -2R/4L

3B ._IB
4B o •o

S-3R/3L

Stringer Location

S-4R/2L

40

30

8 20

©

O

20

10

o 0
O

..=

"_-10
m

O

Oo

0 -20
S-2R/4L S-3R/3L S-4R/2L S-2R/4L S-3R/3L S-4R/2L

Stringer Location Stringer Location

Figure 4.35: Global and local model study: comparison between computed and

measured hoop stresses for strain gage 1-4 (pressure = 9.4 psi; crack

length = 38.2 in.; fi'ame cut; No MSD).



68

_S 4R/2L

O strain gage measurement

.... Model L 1

......... Model L2

Model G3

40

0

Midbay

30

20

0
0

:Z 10

40

30

20
O
O

Z:

10

/

outside)

Frame Location

Frame- 100

......

40

30

20

0
0

:: 10

0

Midbay

30

5 (inside)

Frame Location

20

lO
O

Z:
el3

"_ 0-

-10

Midbay

Frame- 100

O

_" _'_'-_-_.7 .... .

0

Midbay Frame- 100 Frame- 100

Frame Location Frame Location

Figure 4.36: Global and local model study: comparison between computed and

measured hoop stresses for strain gage 5 (pressure = 9.4 psi; crack

length = 38.2 in.; frame cut; No MSD).



69

.stiff spling
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Figure 4.37: Illustration of distributed connection that connects fastener node to

surrounding shell nodes

over which the rivet load is distributed. The area should be of the order of the rivet

cross-sectional area, since distributing the load over a larger area may inadvertently

stiffen the shell elements.

Figure 4.37 illustrates simulation of the distributed connection using still' spring

elements. The still' spring elements with an order of magnitude stiffer than the

rivet spring element were used to distribute the rivet load. For a rivet located

on a prescribed tearing path, it is expected that the rivet stays intact on only

one side of the crack as the crack propagates through the rivet. Thus, only the

shell elements on this side of the crack were used to model the distributed rivet

connection. Figures 4.38 and 4.39 show the predicted hoop stress distributions with

distributed connection simulations; a much better prediction is observed. The local

mesh model, taking into consideration the distributed rivet connection, was used

for stable crack growth and residual strength analyses.

4.2.5 Numerical Results: Stable Crack Growth and Resid-

ual Strength Analyses

Elastic-plastic crack growth and residual strength analyses were conducted using

the local model. Both 4.5 and 5.5 degree critical angles computed at 0.04 inch

behind the growing crack tip were used to investigate the sensitivity of CTOAc on

stable crack growth and residual strength prediction. The 4.5 ° CTOAc was the

angle that best correlates the predicted and observed residual strengths of the MT

tests. The 5.5 ° angle was the mean from the surface CTOA_ measurements in the

MT tests. The plane strain core height was 0.16 inch along the prescribed tearing

path.

Figure 4.40 shows predicted results from the first attempt for stable crack

growth analyses. The change of the CTOA_ from 4.5 ° to 5.5 ° increases predicted

residual strength by about 33% and 22% for the cases without and with MSD

cracks, respectively.
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Although analysisresults in Figure 4.40clearly demonstratethe lossof residual
strength due to the presenceof MSD, all the predicted results (i) under-estimate
the pressureloading to initiate the stable crack growth, and (ii) over-estimatethe
residualstrength.

The much lower predicted pressurefor tearing initiation is mainly causedby
residualplastic deformation left by the fatigue crack growth. A possiblecausefor
the lowerresidualstrengthsobservedin the test may be relatedto the occurrence
of tear strap failure. Both effectsare discussedbelow.

4.2.5.1 Residual Plastic Deformation Effects

The test panelswere subjectedto pressurecycling prior to the residual strength
test. To incorporatethe residualplastic deformationsdueto the cyclic loading, the
residualstrength analyseswerere-performedusingan elastic-plasticcyclic loading
simulation suggestedby Newman [89]. The procedureconsistsof the following
steps:

step 1 Close an appropriate length of fatigue crack.

step 2 Load the fuselage model up to the maximum pressure loading conducted

in fatigue tests.

step 3 Release the crack tip node and unload the model.

step 4 Repeat steps 2 and 3 until the crack tip reaches the initial position for

stable tearing.

This procedure implies that the fatigue crack only propagates at the maximum

pressure during the cyclic loading simulation. For Mode-I only deformations under

constant-amplitude load cycling, crack surfaces close at a positive applied load (i. e.,

step 3). The contact stresses cause the material to yield in compression. Crack

face contact and compressive yielding were not modeled in the current simulations.

In subsequent analyses, the fuselage model is brought to the operating pressure

level during fatigue tests without allowing the crack to advance. The crack is then

allowed to advance one element, and the load is returned to zero. Figure 4.41

illustrates results for a 0.32 inch length of fatigue crack closure used in the analysis

for the case without MSD cracks. The crack-opening and crack-closure pressures in

the fuselage panel simulations follow similar trends observed in the MT fiat panel

simulations [89]. After two cycles of simulation, the crack-opening and crack-

closure pressures quickly stabilize to 7.2 psi and 5.3 psi, respectively.

Figure 4.42 shows two predicted crack opening profiles with and without fatigue

crack closure effect when the pressure loading reaches 8.6 psi (no growth). The ef-

fects of residual plastic deformations on the crack opening profile and consequently,

the CTOA prediction, are clearly observed.

The 7.2 psi crack-opening pressure shown in Figure 4.41 seems to be too high in

comparison with 2D plane stress results [89] and laboratory observations [39, 40].
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(a) (b)

Figure 4.42: Predicted crack opening profiles of outer skin at initial tearing crack

tip: (a) case without fatigue crack closure, and (b) case with 0.32 inch

fatigue crack closure (no stable crack growth, magnification factor =

2.0).

This may be due to the lack of modeling of contact conditions when the crack closes.

That is, the crack faces pass each other so no compressive yielding is developed

in the unloaded state. The compressive yielding stress will reduce residual tensile

plastic deformation thus leading to a lower crack-opening pressure [89].

Figure 4.43 shows the predicted results for a 0.08 inch length of fatigue crack

closure used for the case with MSD cracks. During cyclic loading simulation, the

lead and MSD crack tips are released simultaneously. The crack-opening and crack-

closure pressures at the second loading cycle for the lead crack are about 4.7 psi and

3.3 psi, respectively. We note that the length of fatigue crack closure is restrained

by the length of MSD cracks. Further amount of fatigue crack closure simulation is

possible, but leads to somewhat ambiguous MSD fatigue crack propagation. The

results after two cycles of simulation, however, are believed to essentially capture

the residual plastic deformation effects. This assertion is based on observations

fi'om the case without MSD cracks (Figure 4.41).

Figure 4.44 shows predicted stable crack growth incorporating the closure ef-

fects. Table 4.2 summarizes the predicted and observed starting pressure to initiate

stable crack growth. The plasticity-induced closure increases the initiation pres-

sure by about 150% to 210%. The predicted crack initiation loads are within 6% of

experimental measurements for the cases that incorporate prior plastic residual de-

formations due to fatigue crack growth. However, the predicted residual strengths

are still higher than those observed.

4.2.5.2 Effects of Tear Strap Failure

A possible cause for the lower residual strengths observed in the test is the oc-

currence of failure of other structural elements. Figure 4.45 shows the predicted

effective stress distribution in the outer skin, inner skin, outer tear strap, and inner
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Table 4.2: Predicted and Observed Pressure Loading for Stable Tearing Initiation

predicted (psi)

CTOAc = 4.5 ° CTOAc=5.5 °
observed (psi)

No MSD 2.3 2.7
8.3

No MSD (0.32 inch closure) 8.3 8.4

MSD 2.5 2.8
6.7

MSD (0.08 inch closure) 6.3 6.5
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Figure 4.45: Predicted effective stress distribution (pressure = 9.86 psi, da = 0.5

inch, CTOAc = 5.5°).

tear strap as the stable crack growth analysis reaches 9.86 psi pressure loading for

the case without MSD cracks. Net section yielding is clearly shown in the inner

tear strap.

The possible breakage of the inner tear strap during the residual strength test

was also reported in [49]. To further investigate this damage scenario, a tear

strap with rivet holes was modeled. By taking the kinematic boundary conditions

fi'om the local fuselage model, a stress concentration around the holes is observed

(Figure 4.46). It is then postulated that the high stress concentration is likely to

initiate new cracks fi'om the rivet holes thus leading to breakage of the inner tear

strap.

To incorporate the tear strap damage scenario into the crack growth analysis,

the inner tear strap is cut prior to fatigue crack closure and stable crack growth

analyses as illustrated in Figure 4.47. The predicted crack-opening pressures of
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the broken tear strap models with 0.32 and 0.08 inch fatigue crack closure are 7.0

psi and 3.1 psi for the cases without and with MSD cracks, respectively (@ 7.2 psi

and 4.7 psi for the models with the intact tear strap).

Figure 4.48 shows the predicted stable crack growth and residual strength for

the fuselage models with a broken inner tear strap. The predicted residual strength

using 4.5 ° CTOAc is within 13% of the experimental observation for the case

without MSD cracks and within 1% of the experimental observation for the case

with MSD cracks.

We further examine several damage scenarios with the possible occurrence of

the tear strap failure at various stages of stable crack growth. In subsequent

analyses, the inner tear strap stays intact until it reaches a certain amount of stable

inner skin rivet _ead cl_k outer skin

, \ I I I
/_ _ _ strap cut outer tear strap

inner tear strap

Figure 4.47: Illustration of broken inner tear strap.
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Figure 4.48: Comparison between predicted stable crack growth with broken tear

strap and experimental measurements: (a) case without MSD, and

(b) case with MSD.
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Figure 4.49: Comparison between predicted results with tear strap failure at vari-

ous stages during stable crack growth and experimental measurements

(No MSD, CTOAc = 4.5°).

crack growth. The analysis is continued until the residual strength is reached.

Figure 4.49 shows the predicted stable crack growth and residual strength using

4.5 ° CTOAc for the fuselage models without MSD cracks. For comparison, the

predicted results with an intact tear strap shown in Figure 4.44 are also plotted.

The influence of the tear strap failure on residual strength prediction is again

observed. The occurrence of the tear strap failure at various stages of stable crack

growth aff?cts the predicted crack growth resistance. But this scenario has a very

mild influence on residual strength prediction, as long as there is a sufficient amount

of tearing before the structure reaches its residual strength.

4.2.5.3 Discussion

The difference between predicted and observed residual strengths for the case with-

out MSD cracks may be due to the simulated excess residual plastic deformation

prior to tearing. One way to reduce the plastic wake is to grow the crack at one half

the actual fatigue load. The corresponding crack-opening pressure with 0.32 inch

of fatigue crack closure for the case without MSD is 3.2 psi. This, in conjunction

with the tear strap damage scenario and 4.5 ° CTOA_, predicts 9.34 psi residual

strength for the case without MSD (Figure 4.50). The result is within 1% of the

experimental observation. However, the crack tearing now initiates at loads much
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Figure 4.50: Comparison between predicted stable crack growth and experimental

measurements (broken tear strap, reduced plastic wake, No MSD).

lower than those seen in the experiment, indicating that this correlation may only

be coincidental.

Another possibility of higher predicted residual strength for the case without

MSD may be related to the fact that the current model does not faithfully model

fracturing processes in the vicinity of rivets. In the panel test, the lead crack

propagated into and re-initiated from a rivet hole as illustrated in Figure 4.51.

Apparently, neither the CTOA fracture criterion for the lead crack propagation nor

the idealized distributed rivet representation have sufficient accuracy in capturing

this phenomenon. Further investigation is needed to quantify its effect on residual

strength prediction.

4.2.5.4 Major Observations

Several observations are made from stable crack growth and residual strength anal-

yses conducted in this section:

• For all the scenarios simulated, the loss of residual strength due to the pres-

ence of small MSD cracks is consistently observed. The reduction in residual

strength caused by MSD varies from 28% to 47%.

• The residual strength prediction is sensitive to changes in CTOAc. Altering

the CTOAc fl'om 4.5 ° to 5.5 ° changes the predicted residual strength by 17%
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Figure 4.51:Illustration of crackpropagationnear rivet: (a) lead crack approach-
ing rivet, (b) lead crack growing into rivet hole, and (c) new crack
initiating out of rivet hole.

to 33%for all the analysesconductedin the damageconfiguration without
MSD cracks. It changesthe predicted residual strength by 12%to 22%for
the casewith MSD.

The residual plastic deformation or the plastic wake from fatigue crack
growth has a strong effect on stable crack initiation and a mild effect on
residual strength prediction. For stable crack growth initiation, it is essen-
tial to incorporatethe plastic waketo accuratelypredict the starting pressure
loading. Neglectingplastic wakeeffectleadsto a totally erroneousprediction
of early stablecrackgrowth. For all the residualstrengthanalysesconducted,
the plastic wakeincreasesthe predicted residualstrength by 3%to 9%.

The breakageof the inner tear strap, categorized as possible failure of other

structural elements during stable crack growth, is crucial to residual strength

prediction. For all the analyses conducted, the occurrence of the broken tear

strap reduces the predicted residual strength by 24% to 30%. Cutting the

tear strap prior to or during stable crack growth analysis is a preliminary

approach to model this damage scenario. A better approach would be to

incorporate proper mechanics to initiate and propagate the damage directly

in the crack growth analysis. Also, dynamic effects resulting fl'om the failure

of the tear strap could be simulated, and may not be negligible [130].

4.3 Summary

The crack tip opening angle (CTOA) fracture criterion obtained fl'om coupon tests

is used to predict fracture behavior and residual strength of built-up aircraft fuse-

lages that are subjected to widespread fatigue damage (WFD). In the process,

the feasibility and validity of the analysis methodology are assessed. The major

findings of the fuselage panel study are:

1. The occurrence of small MSD cracks substantially reduces the residual strength

of pressurized fuselages.
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2. Modeling fatigue crack closure is essential to capture the fracture behavior

during early stable crack growth.

3. Possible damage of other structural elements during stable crack growth, e.g.,

tear strap failure, substantially reduces the residual strength of pressurized

fuselages.

4. The distributed rivet load treatment of fasteners is crucial for the local crack

growth model to accurately predict the stress distribution.

5. It is apparent that more full-scale fuselage tests need to be conducted to

fully verify the analysis methodology. However, the CTOA fracture criterion

together with the FRANC3D/STAGS program proves to be an effective tool

to simulate: (1)lead crack growth, (2)MSD crack growth, (3)multiple crack

interaction, (4) plastic wake fl'om fatigue crack growth, (5) tear strap failure,

and (6) corrosion damage in pressurized fuselages.



Chapter 5

Theory for Curvilinear Crack
Growth in Planar and Thin Shell

Structures

Theories and simulations presented in the previous chapters mainly deal with self-

similar elastic-plastic crack growth where crack trajectories are known a priori.

However, a crack in a shell-like structural component under combined loading will

likely propagate in a non-self-similar fashion. Curvilinear crack growth can lead

to the so-called flapping phenomenon observed in pressurized fuselages [137, 82]

(Figure 5.1). Flapping can produce a controlled opening in the fuselage that causes

a "safe" decompression and can prevent catastrophic failure of the structure.

As discussed in the previous chapters, stress intensity factors (SIFs) and the

crack tip opening angle (CTOA) serve well to explain fatigue and elastic-plastic

crack advancement in thin-sheet metallic structures. In addition to these crack

growth criteria, a criterion for predicting the direction of propagation is needed to

simulate curvilinear crack growth.

This chapter together with next two chapters examines some relevant issues

about curvilinear crack growth simulations. Theories for curvilinear crack growth

in planar and thin shell structures are discussed in this chapter. In Chapter 6,

computational methods used to evaluate the T-stress term that is known to have

a significant effect on crack trajectory prediction are discussed. Curvilinear crack

growth simulations of coupon tests and full-scale fuselage panel tests are presented

in Chapter 7.

5.1 Introduction

In general, a crack in planar and thin shell structures under mixed-mode loading

will propagate in a curved fashion. This so-called non-self-similar crack growth

where crack trajectories are not known a priori requires a direction criterion to

predict the impending angle of crack propagation. For crack growth in ideally

85
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Figure 5.1: Flapping phenomenonin pressurizedfuselagedue to curvilinear crack
growth (after [82]).

brittle isotropic material, the threemost commontheoriesfor predicting the crack

propagation angle are:

1. the maximum tangential stress theory (C7OOm,_x)[41],

2. the maximum energy release rate theory (G(O)m,_,)[58], and

3. the minimum strain energy density theory (S(O)min) [120].

There is no consensus on the most satisfactory theory to predict crack growth

direction. A convenient way to compare the predicted crack growth angles fl'om

various mixed-mode theories is through introducing a mixed-mode parameter, _:

= 2 tan_S i K1#77,,I

that characterizes the elastic loading mixity [124]. Comparisons of the elastic

mixity parameter, _, versus the predicted crack growth angle, 0_, fl'om the three

mixed-mode theories are plotted in Figure 5.2. For small values of • where Kzz is

dominant, the three theories predict different crack propagation angles. For large

values of • where/(i is dominant, the three theories predict similar results. In the

present study, the maximum tangential stress theory is used as a starting point to

evaluate the direction of crack growth.

The theory in its original form used only the singular stress fields near the crack

tip to evaluate the maximum tangential stress [41]. Subsequent studies [145, 46]

suggested that the non-singular stress fields can have a significant effect on crack

growth direction and crack path stability. Recent studies [152, 72, 103] further

indicated that the non-singular stress fields play an important role in predicting

crack turning and flapping in fuselage structures.
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Figure 5.2: Comparison of elastic mixity parameters versus predicted crack growth

angles.

The maximum tangential stress theory was originally proposed to predict the

direction of crack propagation in ideally isotropic brittle material under plane

stress or plane strain conditions [41]. It has been extended to include the ett?cts

of elastic and fi'acture anisotropy [14, 12, 21, 104]. Boone et al. [12], using the

theory proposed by Buczek and Herakovich [14], showed that both elastic and

fi'acture orthotropy can att?ct the direction of crack propagation, but the fi'acture

orthotropy was found to be a much more dominant factor. Chert et al. [21] found

that the fi'acture orthotropy has a strong influence on predicted crack trajectories

in narrow body fuselages. The theory has recently been extended to include the

non-singular stress contributions [104].

All the above theories were developed for two-dimensional, linear elastic fi'ac-

ture mechanics (LEFM) problems. As discussed in Section 1.2.2, for pressurized

thin shell structures a geometrically nonlinear analysis is required to capture the

crack tip deformations. The fi'acture parameters developed under the linear elastic

fi'amework have been extended to handle geometrically nonlinear problems with

finite elastic deformations. Eshelby [43], using the energy-momentum tensor, de-

veloped a Lagrangian fi'amework for LEFM problems. The counterpart fi'acture

parameters in the Lagrangian formulation are able to characterize the crack tip

fields for deformations of arbitrary magnitude [43, 119, 125].

The maximum tangential stress theory originally developed under small-scale

yielding conditions has been extended to the elastic-plastic range. Shih [124] stud-

ied mixed-mode, plane strain problems using the deformation plasticity and near-

field singularity dominated by Hutchinson-Rice-Rosengren (HRR) fields [60, 120,
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Y

Figure 5.3: Local crack tip coordinates.

59]. He concluded that the crack propagation angle depends not only on the elas-

tic mixity parameter, ffJ, but also on the strain hardening exponent of materials.

Maccagno and Knott [80] as well as Pawliska et al. [100] using Shih's approach,

further showed the applicability of the maximum tangential stress criterion for

elastic-plastic materials. Recent studies [134, 51,133] indicated that an additional

directional criterion related to shear type fl_cture is needed for Mode-II dominated

crack propagation in metals. These authors, however, agreed that the maximum

tangential stress criterion suffices for Mode-I dominated crack propagation.

5.2 Crack Tip Fields in Two Dimensions and Thin

Plates

The crack tip stress and displacement fields in two dimensions [146] as well as in

thin plates subjected to bending and twisting [147, 57] are outlined below.

Let (x, y) be the local Cartesian coordinates and (r, 0) be the local polar co-

ordinates centered at the crack tip (Figure 5.3). For two-dimensional elastic crack

problems, Williams [146] derived a set of solutions for stresses and displacements

that would satisfy equilibrium and compatibility equations in the neighborhood of

a crack tip:

(Tij =

Ui z

-}-o_

Z A__._fij(e) (5.2)
/_------c_

+oc

Z v__+_ gi(0) (5.3)
/_------c_

is the eigenvalue of the problem and A_ and B_ are coemcients of expan-where
sions.

With the physical argument that the total strain energy should be bounded at

the crack tip, stress expansions from Equation (5.2) in terms of the local Cartesian
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where/(i and KII are Mode I and Mode II stress intensity factors, T is the constant

non-singular stress term that appears only in the axx component, and Ain and Aiin

are Mode I and Mode II coefiqcients of higher order terms.

Similarly, displacements from Equation (5.3) can be expressed as:

4G (2_ - ]) oCOS _ -- COS

+ _"(cos0)
E

,_ [ nO
_(AIn) r_ x eccos+ 2G 2
n=3

+ _+(_])n cos
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--_ (AHn) r'_ x [rcsinnO2G2
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+ (_+(v _)_i.

2 cos(_ - 2)0

+ sinai

2 sin(2 - 2)0

(5.7)
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where E is the Young's modulus, G is the elastic shear modulus, and u is the

Poisson ratio. For plane stress problems, _c = (3- u)/(1 + u), E = E, and _ = u.

For plane strain problems, _c = (3 - 4u), /_ = E/(1 - u2), and _ = u/(1 - u).

In addition to the above two-dimensional fields, Williams [147] and Hui and

Zehnder [57] further derived an asymptotic field for bending in elastic thin plates.

The bending stress and displacement fields near the crack tip in the context of

Kirchhoff plate theory are:

(b)(Yrr
b

(YrO

abo
(3+ 5.)coso_ (7+ .) cos_ '__ k, z _(l_u) sinO+(7+u)sin_
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Figure 5.4: Local crack tip coordinates for a through crack in a plate (after [57]).

(5.12)
vb _ --Z Ow b

where (r, 0, z) are the polar cylindrical coordinates centered at the crack tip

(Figure 5.4), t is the plate thickness, and kl, ks are the Kirchhoff theory stress

intensity factors.

For elastic curvilinear crack growth in thin shell structures, the local crack tip

fields are assumed to be sufficiently characterized by the two-dimensional plane

stress and the Kirchhoff plate fields [57, 108]. For points on a shell midsurface (i. e.,

z = 0), kl and ks stress intensity factors make no contributions to the displacement

and stress fields. We thus will directly extend the two-dimensional crack growth

direction criterion to handle thin shell LEFM problems.

5.3 Crack Growth Direction Criterion Based on

Maximum Tangential Stress Theory

In their work on predicting the direction of crack growth, Erdogan and Sih stated

[41]:

" ... (There are) two commonly recognized hypotheses for the exten-

sion of cracks in a brittle material under slowly applied plane loads:

(a) The crack extension starts at its tip in radial direction.

(b) The crack extension starts in the plane perpendicular to the direc-

tion of greatest tension.

These hypotheses imply that the crack will start to grow from the tip

in the direction along which the tangential stress a00, is maximum ...

The tangential stress a00 near the crack tip can be derived fi'om the local Carte-

sian stresses (Equations (5.4), (5.5), and (5.6)) with coordinate transformations.

For two dimensional mixed-mode problems, a00 up to the order of the T-stress

term is:

1 20( 203z )a00 - cos K1 cos _ xKI_ sin 0 + r sin _ 0 (5.13)
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Basedon the hypothesesthat crack extensionwould take place in the direction
alongwhich o-e0possessesa maximum value,we have:

0o-00 02O-oo

00 --0 and 00_ <0 (5.14)

Taking the derivative of o-00 with respect to 0, we have:

0o-00 1 (_ _ _
o0 2v/g_7 k cos (KI sin 0 ÷Ku(3COS0-1))+2Tsin0cos0 (5.15)

Taking the second derivative, we have:

( )( 0c_Uo-00_ 1 3 (3 cos 0 - 1) K, cos - - KH sin + 2 T cos 20 (5.16)
o0_ _ - g 2

Thus, o-00 is a relative maximum if the following conditions are satisfied:

s (- a cos _) (K, sin0c÷Ku(3COS0c-1))÷2Tsin0_cos0_=0

3(3cos<-1))(K,cos_ - K. sin_) + 2rcos2<< 0t_(-_
(5.17)

where rc is a critical distance away from the crack tip and 0_ is the corresponding

crack propagation angle. We note that this directional criterion is the same as

the one proposed by Williams and Ewing [145] and later corrected by Finnie and

Saith [46]. The above equation reduces to the classical Erdogan and Sih directional

criterion [41] ifT = 0 or r_ = 0, i.e.,

£2i sin 0_ ÷ £2ii (3 cos 0_ - 1) = 0 (5.18)

By comparing Equation (5.17) with Equation (5.18), one finds that a length

parameter, r'c, is needed to incorporate T-stress into the crack growth directional

criterion. We will further discuss the physical meaning of r_ in Section 5.3.3.

5.3.1 Crack Path Stability under Pure Mode I Conditions

Using Equation (5.17), crack path instability in pure Mode I conditions is predicted

for certain circumstances under positive T-stress. For pure Mode I problems where

KH = 0, we have closed-form solutions for Equation (5.17) [152]:

0_=0 (5.19)

or

oc:2cos ,520,
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Figure 5.5: The tangential stress o-00 distributions for different values of critical

distance r_ under pure Mode I conditions (T > 0).

in which _'F _ (3K,)/ (32T_). For 0_ = 0, the second derivative of o-00 with

respect to 0 is:

0_o-oo 3 K1

00 _ 4
__ + 2T (5.21)

Thus, under a negative T-stress environment, O_aoo/O0 _ is always smaller than

zero. This implies that o00 at 0_ = 0 is a relative maximum and the crack will

grow in a straight (i.e., self-similar) manner. For positive T-stress, the crack will

propagate in a self-similar fashion only if:

(5.22)
r_ < 128rc T-)

For rc > (gK_)/(1287rZU), o-00 at 0_ = 0 is a relative minimum and a crack will

grow in the direction predicted by Equation (5.20). Figure 5.5 illustrates the o-00

distribution for different values of r_ and the relative maximum and minimum.

5.3.2 Determine Crack Propagation Angle under General

Mixed-Mode Problems

For general two-dimensional mixed-mode problems, the crack propagation angle

can be solved from Equation (5.17) for given r_, KI, KH, and T. Figure 5.6 plots
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Figure 5.6: Predicted propagation angle from maximum tangential stress theory

(Equation (5.17)).

m

the predicted propagation angle 0c versus a dimensionless parameter T [104]:

-- 8 T _ (5.23)
T= 3I(s

for various ratios of Kss/Ks.

The parameter rc is assumed to be a material constant and will be further

discussed in next section. /£s and/£ss for two-dimensional problems can be accu-

rately computed fl'om the path independent M-integral [149] or fl'om symmetric

and anti-symmetric parts of the J-integral [15]. For thin shell problems, mem-

brane and bending stress intensity factors can be obtained fl'om an extension of

the modified crack closure integral method [106, 142]. How to obtain an accurate

T-stress numerically is not obvious from the literature. We will further discuss this

issue in Chapter 6.

It is of historical interest to consider a specific angled crack problem shown in

Figure 5.7. For this special case, we have [41, 46]"

Ks--o-x/_sin_fl Kss=ax/_sinflcosfl T=a(cos_ fl-sin_ fl)

The predicted propagation angle 0_ can be solved by applying Equation (5.17). In

Figure 5.7, the predicted propagation angles 0_ from Equation (5.18) (or from Er-

dogan and Sih [41]) are compared with those of _/a = 0.1 fl'om Equation (5.17)

(or from Finnie and Saith [46]). Some results are observed:
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Figure 5.7: Predicted propagation angle for the angled crack problem.

• Two curves intersect at fl=45 ° in which T= 0.

• The incorporation of the T-stress predicts a larger propagation angle under

positive T-stress conditions. It predicts a smaller angle under negative T-

stress conditions.

5.3.3 Discussion: The Critical Distance rc

As shown in Figures 5.5 and 5.6, the critical distance ahead of the crack tip,

re, plays an important role in predicting crack path stability and crack growth

direction. Earlier studies by Williams and Ewing [145] and Finnie and Saith [46]

assumed that r'c/a is a constant value (cf. 2r'_/a = 0.1 in Figure 5.7). Streit

and Finnie [132] further postulated that r_ is a critical distance in front of the

crack tip where fracture would occur. A photoelastic and experimental study

of Mode I crack extension was conducted. The ratio K;/T was determined by

analyzing the isochromatic-fl'inge geometry in the photoelastic experiments. The

critical distance r_ was determined by simply observing the onset of crack turning

where r'_ = (9K_)/(128rcT _) at this instance. They concluded that for 7075-T651

aluminum plate, rc = 0.005 inch for side-grooved specimens and r_ = 0.01 inch for

the ungrooved, L-T specimens. These values seem to be too small in comparing

with subsequent experimental studies [110, 103].

Ramulu and Kobayashi [110] extended the method of Streit and Finnie [132]

and measured r_ for a dynamically growing crack. They observed that r_ is a

constant value for specimens under various mixed-mode conditions. Based on the

dynamic photoelastic experiments, they concluded that r_ is about 0.05 inch for
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Homalite-100.Recentstudiesby Kobayashiand his associates[71,72, 73] further
estimated that rc is about 0.04 0.06 inch for 7075-T6 and 2024-T3 thin-sheet

fracture specimens.

Pettit et al. [103] determined the magnitude of rc by analyzing crack turning

in 2024-T3, double cantilever beam (DCB) specimens. They estimated that the

value of r_ is about 0.05 inch for stable tearing under a monotonically increasing

load. For slow fatigue crack growth under a low stress level of cyclic loading, r_ is

assumed to be negligible. Recent ongoing research [102] further suggested that the

magnitude of r_ for stable tearing in 2024-T3 specimens is about 0.04 0.09 inch.

In this study, we simply assume that r_ is a material constant that can be deter-

mined fl'om fracture coupon tests. The effect of rc on crack trajectory prediction

will be extensively examined in Chapter 7.

5.3.4 Anisotropic Problems

Material grain structure variations and other micro-structural factors from dill?r-

ent forms of material processing can influence fracture toughness variation with

direction and, therefore, the crack growth trajectory. Taking a rolled sheet made

of 2024-T3 aluminum alloy for example, the direction perpendicular to the rolling

direction could have a 5 to 20% higher toughness than that of the rolling direction

[47, 44, 99].

In general, crack propagation in anisotropic media is considerably more com-

plicated than the isotropic case [12]. In the present work, a simple extrapolation

of the maximum tangential stress theory to materials with orthotropic toughness

proposed by Buczek and Herakovich [14] is used. The tangential stress is normal-

ized with respect to the directional strength of the material. Crack propagation is

assumed to be in the direction of maximum normalized stress, such that:

Maximum L K_((_) \ K_ ] _.i_i_l

where (_ is the angle characterizing the material grain orientation, Kc((_) is the

strength parameter characterizing the material fracture resistance, and 0_ is the

angle of impending crack propagation.

A simple elliptical function is used in this study to characterize the anisotropic

fracture toughness, K_((_) [14, 68]. The equation of the ellipse with fracture tough-

ness K_(O °) along the material longitudinal (_') direction and K_(90 °) along the

transverse (9) direction is (Figure 5.8):

+ _ 1 (5.25)
[No(0°) _] [K_(90°) _]

Substituting 2' = K_(cj cosc_ and ;_ = K_(cj sinc_ into Equation (5.25), we have:

/Q(_)e ( c°sU °e sin2_
\Kc(Oo) _ + K_(90o)_ ] = 1 (5.26)
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Kc(90 °)

0°)

Figure 5.8: Elliptical representation of anisotropic fracture toughness.

Thus, the anisotropic fracture toughness Kc(oe) carl be expressed as [104]"

K_(_) = 4/ 1 (5.27)
cos_ + (1/_,d_ sin_V

where K,_ is the fracture orthotropy ratio defined as K,_ - K_(90°)/K_(O°).

Both the fracture orthotropy ratio, K,_, and the material orientation angle, oe,

can affect the predicted angle of impending fracture propagation, 0_, as demon-

strated in Figure 5.9 and 5.10.

We note that Equation (5.26) can be generalized to the n-th order:

\Kc(O°) n + K_(90o)n = 1 (5.28)

and n = -1 was used in [14, 12].

5.4 Discussion: Crack Growth

rion for Geometrically and

linear Problems

Direction Crite-

Materially Non-

Possible extensions of the above crack growth directional criteria developed un-

der the LEFM framework to handle geometrically and materially nonlinear shell

problems are discussed below.
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5.4.1 Geometrically Nonlinear Problems

To compute stress intensity factors and T-stress with elastic deformations of ar-

bitrary magnitude, one can simply evaluate the fl'acture parameters based on the

computed quantities in the current deformed equilibrium configuration. This so-

called Eulerian approach together with the modified crack closure integral method

has been used successfully to compute the membrane and bending stress intensity

factors for geometrically nonlinear shell problems [106, 142].

It is often desirable to use the path independent integral to evaluate the fl'acture

parameters. However, the integral is difficult to be directly applied in the Eulerian

fl'amework [43]. Taking the deformed structure shown in Figure 4.30 for example,

it is conceptually difficult to evaluate a rigorous path independent integral at the

deformed configuration with the occurrence of severe bulging.

An alternative way is to evaluate the path independent integral in the La-

grangian fl'amework [43, 70]. The derivations rely on finding the counterparts of

conservative (i.e., path independent) integrals, well-defined under elastic states

with infinitesimal deformations, in the context of finite elastic deformations. The

fl'acture parameters (for example, stress intensity factors) are then related to these

conservative integrals.

The well known conservative J-integral in two dimensions, for example, is given

by:

[ Oui lJ= Waxj- (5.29)
F

where , is an arbitrary counter-clockwise contour around the tip of a crack, W

is the strain energy density, a_j is the Kronecker delta, aij are components of the

Cauchy stress tensor, ui are components of the displacement vector, and nj are

components of the normal vector along the contour ,.

The counterpart of the J-integral under finite elastic deformations can be de-

rived in a relatively straightforward manner in Lagrangian coordinates, X. With

re-interpretation of the field quantities with reference to the undeformed config-

uration, the J-integral for geometrically nonlinear problems can be expressed as

[43, 70]:

>j j Nj (5.30)
C

where C and Nj are evaluated in the undeformed configuration, W is interpreted

as the strain energy per unit undeformed volume, and Pij are components of the

nominal stress tensor (transpose of the first Piola-Kirchhoff stress tensor).

The d in linearized and Jc_N in finite elastic states both characterize the energy

release per unit crack advance [43]. Under Mode-I, plane stress conditions, we thus

have:

K, = ,/TY (5.31)
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and equivalently,

(K,)cN = V@GN (5.32)

Similarly, other fracture parameters can be related to their finite deformation

counterparts. As a result, crack propagation and direction criteria derived under

LEFM can be extended to handle geometrically nonlinear problems.

However, we note that the Lagrangian counterparts of conservative integrals

to characterize the stress intensity factors and T-stress for geometrically nonlinear

shell problems are yet to be derived. In this study, we will simply use the mod-

ified crack closure integral method to compute the membrane and bending stress

intensity factors [106, 142] and the displacement correlation method to evaluate

the T-stress for geometrically nonlinear shell problems [69, 134, 104].

5.4.2 Materially Nonlinear Problems

The crack growth directional criteria developed above are strictly valid only for

small-scale yielding problems. The criteria may be sufficient for curvilinear crack

growth under fatigue loading (cJi Section 1.2.2). For stable crack growth, direc-

tional criteria need to be extended to the elastic-plastic range.

In an early attempt, Shih [124], using HRR fields, extended the maximum

tangential stress theory to the elastic-plastic range under plane strain conditions.

Figure 5.11 shows the predicted crack propagation angle, 0c, versus the elastic load

mixity, • (Equation (5.1)). The results indicate that the crack propagation angle,

0c, depends not only on the elastic mixity parameter, _, but also on the strain

hardening exponent of materials, n.

For n = 1 (i.e., linear elastic material), the criterion reduces to the maximum

tangential stress theory of Erdogan and Sih [41]. Thus, the theory will not capture

the crack path instability under the pure Mode-I conditions caused by T-stress.

And more importantly, the theory is based on the HRR fields. The fields are

no longer valid to characterize the elastic-plastic crack tip fields after a sufficient

amount of stable crack growth. These two main disadvantages prohibit direct

application of the above theory to predict the direction of stable crack growth in

fuselage structures.

Recently, a simple crack growth directional criterion based on the crack tip

opening displacement (CTOD) concept has been proposed by Sutton et al. [133].
The criterion is motivated by the laboratory observations of recent Arcan specimen

tests conducted by Amstutz et al. [1, 32]. The test results show that there is a

sharp transition of crack growth behavior fl'om predominantly Mode I type to

Mode II type fl'acture for 2024-T3 thin sheet materials. Since the crack growth

direction prediction based on the maximum tangential stress theory is mainly for

Mode I dominated fl'acture, Sutton et al. [133] proposed a general CTOD-based

criterion to overcome this disadvantage.

The CTOD-based crack growth directional criterion considers a kinked crack

departing fl'om a main crack as shown in Figure 5.12. The criterion postulates
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Figure 5.11:Comparison of elastic mixity parameters versus predicted crack
growth anglesfor different strain hardeningexponents(after [124]).

that crackgrowth direction of a kinked crack would likely follow a path that gives

the maximum CTOD of the kinked crack (i.e., 5). The following steps outline

the procedure to incorporate the directional criterion into the elastic-plastic crack

advancement controlled by the CTOA criterion [133]:

step 1 Apply the load monotonically until D (or CTOD) at a specified distance L

behind the main crack tip, or equivalently CTOA, reaches its critical value.

step 2 Release the main crack tip node and extend the crack along every possible

ray fi'om the crack tip.

step 3 Compute _ of all possible kinked cracks.

step 4 Determine the crack propagation angle 0c by finding the path that gives

the maximum 5.

step 5 Continue stable crack growth simulation controlled by the CTOA criterion.

The CTOD-based directional criterion predicts both Mode I and Mode II type

crack growth observed in Arcan specimens [133]. The directional criterion, how-

ever, suffers fi'om its computational inefiqciency since a must be evaluated for a

large number of rays to determine the propagation angle.

To overcome the drawback, Sutton [133] further assumed that there exists a

unique relationship between a (CTOD of the kinked crack) and D (CTOD of the
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crack growth directional criterion.
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Figure 5.13: Comparison of predicted propagation angles for the angled crack prob-

lem.

main crack). By defining a local mixity (_ = Dv/Dx of the main crack, an empirical

equation to predict the crack propagation angle, 0c, was found:

0 c = f C_ltan-l(blct)

{ascos(b  )©

if (t < (to
(5.33)

if oe > oe_

where oe_ is the critical local mode mixity for the transition between Mode I and

Mode II type fl'acture and as, bs, as, and bu are the curve fitting parameters based

on fl'acture test data. A set of parameters, (_ = 70 ° , as = -36.5, bs = 2.2,

as = 57.3, and bu = 1.0 were obtained fl'om the test data of 0.09 inch thick Arcan

specimens made of 2024-T3 aluminum.

Equation (5.33) and the fitting parameters based on Arcan test data were

argued to be material constants and to be applicable to other geometries with the

same thickness [133]. We, however, found that this assertion may not hold for all

cases. Taking the angled crack problems under LEFM for example, a substantial

difference as shown in Figure 5.13 is observed between the predicted angles by the

maximum tangential stress theory and those fl'om Equation (5.33). The difference

observed in Mode I dominated fl'acture is thought to be related to: (1) built-in

orthotropy and (2) widespread plasticity in Arcan specimens. Further investigation

is needed to fully justify the observation and assess the geometry independence of

Equation (5.33).

Neither the HRR-type extension of the maximum tangential stress theory nor

the CTOD-based directional criterion seems to be sufficient to fully characterize

the direction of elastic-plastic crack growth. In this study, we will simply apply

the LEFM approach to predict the direction of elastic-plastic crack growth.
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5.5 Summary

In this chapter, theories for curvilinear crack growth in planar and thin shell struc-

tures were discussed. A well known crack growth directional criterion based on the

maximum tangential stress theory was examined. Singular as well as non-singular

constant stress (or T-stress) fields were included in evaluating the stress states near

the crack tip.

Equation (5.17) described the predicted impending propagation angle based

on the maximum tangential stress theory with the T-stress effect. Its numerical

outcome on crack path instability and crack growth direction was discussed in

Sections 5.3.1 and 5.3.2. This criterion will be used in Chapter 7 to predict the

propagation angle for isotropic mixed-mode problems.

In Section 5.3.4, the directional theory was further extended to include the

effect of material anisotropy. A simple elliptical function was used to characterize

the anisotropic fl'acture resistance in different material orientations. The predicted

propagation angle incorporating the T-stress and fl'acture toughness orthotropy ef-

fect was described symbolically in Equation (5.24). The effect of fracture toughness

orthotropy ratio and the material orientation angle on the predicted propagation

angle was shown in Figures 5.9 and 5.10. This directional criterion will be used in

Chapter 7 to predict the propagation angle for orthotropic mixed-mode problems.

We then discussed possible extensions of the above directional criteria to han-

dle both geometrically and materially nonlinear problems. For elastic deformations

of arbitrary magnitude, one can evaluate the stress intensity factors and T-stress

based on either the Eulerian or Lagrangian formulation. The latter is conceptually

simple to be used with the powerful path independent integral. However, the La-

grangian counterparts of conservative integrals to characterize the stress intensity

factors and T-stress for geometrically nonlinear shells are yet to be derived. In this

study, the modified crack closure integral method and the displacement correlation

method will be used to evaluate the stress intensity factors and T-stress in thin

shells, respectively.

The possible extension of the maximum tangential stress criterion to predict the

propagation direction of elastic-plastic crack growth was commented and critiqued.
A new CTOD-based direction criterion was also examined. We concluded that

neither of them seems to be sufiqcient to fully characterize the direction of elastic-

plastic crack growth. Thus, in this study we will simply apply the LEFM approach

(Equations (5.17) and (5.24)) to predict the elastic-plastic crack growth direction.



Chapter 6

Numerical Evaluation of T-Stress

In this chapter, numerical methods for T-stress evaluation are discussed. Among

all the possible methods that can be used to compute T-stress, we focus on the

path independent integral method because its inherent nature allows us to evaluate

the desired value in a far-field region away fi'om the crack tip where numerical

accuracy is greater. We will first put the FRANC3D/STAGS program aside and

use a powerful two-dimensional hp-version finite element code [74] to fully quantify

and assess the accuracy of computed T-stress using the path independent integral

method. We will then discuss applicability of the FRANC3D/STAGS program in

evaluating T-stress for two-dimensional as well as thin-shell problems.

6.1 Introduction

The second term of the elastic asymptotic stress series near a crack tip [146], often

called T-stress, is known to have significant influence on crack growth direction

and crack path stability [46, 103, 26]. In addition the T-stress is also known to

have a strong influence on crack-tip constraint [38, 98]. To obtain an accurate

T-stress for complex geometries subjected to arbitrary loading thus becomes an

important task for fi'acture analysis assessment.

Several numerical methods have been used to evaluate the T-stress [76, 77, 67,

123, 129]. An earlier study by Larsson and Carlsson [76] determined the T-term

fi'om two finite element solutions, one with a K-field and the other with actual load-

ing and geometry configurations. Leevers and Radon [77] computed the T-stress

by incorporating the eigenfunctions fi'om Williams [146] in a variational formula-

tion. Sham [123] used second order weight functions through a work-conjugate

integral to calculate the T-term.

To compute T-stress in conjunction with finite element analyses, a path inde-

pendent integral similar to the J-integral [42, 114] for stress intensity factors is

highly desirable. Cardew et al. [16] and Kfouri [67] presented a novel J-integral

type of path independent integral for computing the T-term fi'om finite element

analyses. Recently, another type of path independent integral for T-stress compu-

106
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tation basedon the Betti-Rayleigh reciprocaltheoremhasbeenproposed[129,151].
Dueto its simplicity, the Betti-Rayleigh reciprocaltype of conservativeintegral has
beenwidely usedto solve crack and notch problems for homogeneousas well as
bimaterial bodies [131, 127,8]. As will be shownin this study, these two path
independentintegralsare analytically equivalent.

To our best knowledge,none of the previous studies has fully addressedthe
accuracyof numericalT-stress computations. Published values vary between three

and five percent for identical loading and geometry configurations and the error

for the computed T-stress is generally unknown. It is well known that to increase

the accuracy of a finite-element computation, either the mesh has to be refined

(h-version) or the polynomial degrees of the shape functions have to be increased

(p-version). A combination of both strategies, referred to as the hp-version of

the finite element method, is known to show exponential rates of convergence in

energy norm even if the problem has singularities [6]. In our contribution we will

show that path independent integrals, in conjunction with hierarchical, p- and

hp-version finite element methods [141], provide a powerful tool to obtain highly

accurate numerical results for T-stress. Using a novel error estimator for the T-

stress, the accuracy of the computation is quantified and assessed.

6.1.1 Outline for Numerical Assessment of T-stress Com-

putation Using a p-version Finite Element Method

The derivations of path independent integrals for T-stress are studied in Sec-

tion 6.2. Finite element implementations of equivalent domain integrals in con-

junction with the hierarchical p-version finite element method are discussed in

Section 6.3. To quantify the error in computing T-stress using the path indepen-

dent integrals, an error estimator is proposed. Using a highly accurate hp-version

finite element code [74] a benchmark example with various K1 and T imposed

boundary conditions is studied in Section 6.4 with the goal being to assess the

accuracy of the numerical computation of T-stress. We then compute values of

T-stress for various well known fracture specimens and compare our results with

values from the literature.

6.2 Path Independent Integral For T-Stress Com-

putation

Two types of path independent integrals for T-stress evaluation have recently been

proposed. One is based on the Betti-Rayleigh reciprocal theorem [129, 151] and

the other is based on Eshelby's energy momentum tensor [16, 67]. For the Betti-

Rayleigh reciprocal type of conservative integral, we will detail the derivation be-

cause of its relative ambiguity in the literature. For Eshelby type integrals, we will

briefly outline the formulation in Cardew et al. [16] and discuss their analytical
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equivalenceto the Betti-Rayleigh reciprocaltype of conservativeintegral.

6.2.1 Construction of Path Independent Integral for T-

Stress Using Betti-Rayleigh Reciprocal Theorem

The Betti-Rayleigh reciprocal theorem states that "for a hyperelastic body subject

to two infinitesimal systems of body and surface forces, the work done by the first

system in the displacement caused by the second equals the work done by the

second in the displacement caused by the first" [83]. For elastostatic problems,

the body forces fi and surface tractions ti produce displacements ui. The body

forces f[ and surface tractions t_ produce displacements u_ and are called auxiliary

fields. From the results of divergence theorem, assuming sufficient smoothness of

the functions and the boundaries of the body, we can prove the Betti-Rayleigh

reciprocal theorem:

A V A V

where A is the bounding surface of the body, dA is an infinitesimal element of the

surface, V is the volume of the body, and dV is an infinitesimal element of the

volume. For a two-dimensional case without body forces, Equation (6.1) reduces
to:

/(¢ui -  iu;) = (6.2)dS 0

S

where S is the bounding curve of the body and dS is an infinitesimal segment of

the curve.

To construct a path independent integral for a two-dimensional elastic body

with a crack using the Betti-Rayleigh reciprocal theorem, the procedure outlined

by Stern et al. [131] is followed. First consider a contour integral along a closed

path (C, C+, C_, and C_) as shown in Figure 6.1. From Equation (6.2), we have:

e

Since 6'+ and C_ are traction free, we have

+ = 0

e

(6.3)

Equation (6.4) proves the path independence of the contour integral. With & =

(Tijf_ j where (Tij are components of the stress tensor and nj are components of the

(6.4)



109

y

Y r

Figure 6.1: A closed contour in the neighborhood of a crack tip.

outward pointing normal vector of the contour, Equation (6.4) can be expressed

as:

e

Due to its path independent nature, the integral on the left hand side of Equa-

tion (6.5) can be evaluated on a contour away fl'om the crack tip where numerical

solutions can be used for o-ij and ui without losing too much accuracy. The integral

on the right hand side of Equation (6.5) is evaluated analytically as e--+0 [8].

Let (x, y) be the local Cartesian coordinates and (r, 0) be the local polar

coordinates centered at the crack tip. For two-dimensional elastic crack problems,

Williams [146] derived a set of solutions for stresses and displacements that satisfy

the equilibrium and compatibility equations near a crack tip (@ Equations (5.2)

(5.8)).
+oc

- f4j(O) (6.6)

+oc

a k
= Z (0) (6.7)

a is the eigenvalue of the problem and Aa and Ba are coet%cients of thewhere

asymptotic expansions. In order to obtain coet%cients of a particular order of -_

alone, the auxiliary fields required in the reciprocal work relation in Equation (6.5)

are:

O-:j _,a r 2 Ui _,a r 2

The question arises how to extract the contributions of T-stress fl'om above se-

ries expansions, without contributions fl'om singular and other higher order terms.
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Considering Equation (6.8), the idea is to choose auxiliary fields so that vi*j _ r-2

* _ r -s to cancel all contributions fl'om the first, singular terms of theand u i

expansions in Equation (6.5) to the T-stress term. The auxiliary stresses and

displacements in local Cartesian coordinates are:

cos 20 + cos 40
* = (6.9)

_Txx 2 % 1`2

cos 20 - cos 40

o-vv = 2 rc r 2 (6.10)

sin 40

o-_v - 27rr 2 (6.11)

1 t; cos 0 + cos 30
* - × (6.12)

Ux 4rc r 26

1 -t; sin 0 + sin 30
* - × (6.13)

uv 4rc r 26

where G is the shear modulus, and t; = (3- u)/(1 + u) for plane stress problems

and t; = (3 - 4u) for plane strain problems.

It is clear that with such auxiliary fields, other higher order terms in stress and

displacement expansions result in no contribution to the contour integral as r--+ 0.

With some algebraic manipulation, it is possible to show that no contribution

occurs from the singular terms, and

where /? = E for plane stress problems and /? = E/(1 - r,2) for plane strain

problems in which E is Young's modulus.

As a result, T-stress is readily computable by combining Equations (6.5) and

(6.14) with finite element analyses:

(6.15)

where u( E and ai5 E are stresses and displacements of a finite element solution.

6.2.2 Construction of Path Independent Integral for T-

Stress Using Eshelby's Energy Momentum Tensor

Another type of path independent integral, following Eshelby, has been proposed

for T-stress computations [16, 67]. The formulation uses auxiliary fields from point

force loading in conjunction with finite element results. The T-stress is obtained

by combining a common J-integral with a J-integral of superimposed auxiliary
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Figure 6.2: Point force applied at crack tip.

fields from the point force solutions. A brief outline of the formulation is given

below.

Considering a point force at the crack tip in a infinite body (Figure 6.2), the
stress fields in local Cartesian coordinates are:

f
_** - cos a 0 (6.16)

7ff

f
_vv -- cos 0 sin S 0 (6.17)

7YT'

f
_xy - cos _ 0 sin0 (6.18)

7YT'

m

Let F denote the two-dimensional elastic solution near the crack tip and F the

solution from the point force. The J-integral of the superimposed state of F and

F can be expressed as:

where eik are components of the strain tensor.

By expanding the expression, one can show that J(F, F) in Equation (6.19) is

equivalent to

m m

J(V,v) = J(V) + J(V) + J. (6.2o)

in which J(F) is the well known J-integral for stress intensity factor computation,

J(F) is the J-integral of the point force solutions, and

1

Jx =¢_, [_((7ik_ik + _ikeik)Sxj -- ((7ijrdi,x + _ijUi,x)] nj dC (6.21)

is the integral associated with the "cross-terms". From the derivations in [16] and

[67], we have:

Tf
J(Y) = 0 and & - _ (6.22)

E
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By rearranging Equation (6.20), we obtain a conservative integral for T-stress:

[J(F,F)- J(F)] (6.23)
T= 7

In [67], the point force solution was obtained fl'om an additional finite element

calculation. This implies that for a specific problem, two finite element compu-

tations need to be performed to obtain T-stress. In this study, we will use the

analytical fields directly fl'om the point force solution to evaluate T-stress. The

displacement derivatives with respect to x and y for the point force auxiliary fields

are:

f _ccos0+cos30
_5x,x = -47cr 2 G (6.24)

f -t_sinO + sin 30
Uy,x = -47cr 2G (6.25)

- f (1+eos_O+ _eos_O)sinO (6.26)
?'tx'y -- ETF 7"

- f (-sinUO+PeosUO) eosO (6.27)
?.ty,y -- ETF r

and the T-stress can be readily evaluated fl'om Equation (6.23) using a finite

element solution and analytical stress and displacement derivative fields of the

point force.

6.2.3 Analytical Equivalence between Betti's Reciprocal

and Eshelby Integrals

To prove that both types of contour integrals for T-stress are analytically equiva-

lent, we first observe that:

?.ti, x = ?.t i

(Tij,x = (Tij

by setting the point force equal to one. Substituting this relationship into Equa-

tion (6.14), we have:

T
"(, ,-- (TijU i -- (TijU i )rtj de

Jc

= _(_ij,xUi)ftjdC - _6((Tijrdi,x)ftj dC

E

(6.2s)

Sromchain rules, we have (<j_i),x = (<j,x_) + (<j_,x) and Equation (6.2S)
becomes:

= = _ijui),xnj dC- (Tij_i,x)nj dC- _ijUi,x)nj dC (6.29)
E
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1
By applying divergence theorem and recalling (Tij,j = 0 and eij = _(ui,j + uj,i),

the first term in Equation (6.29) can be expressed as:

dC = j.'/" (_iju_),xj dA
A

= ¢2(_ikeikSxj)nj dC

= _ (a_ci_ + _)5xj_j dC (6.30)

Substituting Equation (6.30) into Equation (6.29), we then prove the analytical

equivalence between Betti-Rayleigh reciprocal and Eshelby type of contour inte-

grals.

6.3 T-Stress Evaluation Using Finite Element

Analyses

6.3.1 Equivalent Domain Integral

The conservative line integrals for T-stress derived above may not always be suit-

able for use directly with results obtained by standard finite element methods. A

procedure that converts a line integral into an equivalent area (or domain) integral

by means of Gauss integral theorem is usually employed. The equivalent domain

integral is known to have higher accuracy in extracting the desired integral values

fl'om given standard finite element solutions [78, 7].

Following Li et al. [78], for cracks in homogeneous bodies, the integrals in

Equations (6.15) and (6.23) can be converted into their equivalent domain integrals

over a closed area A. For the Betti-Rayleigh reciprocal type of contour integral,

the counterpart is given by:

T _ [/" _ Fu • • Fu,= Vaij u i - aiju i ) q,jdd (6.31)
JJ A

For an Eshelby type contour integral, the domain integral is given by:

[J(r, p)- J(r)]
T - f

/_ (./j' [(_:u+_iJ), ,,x +_i,x) +- (u gu - (W Fu W)Sxi] q,jdA
f ___ A

j./
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Figure 6.3: An equivalent domain integral.

where the area A is a region as illustrated in Figure 6.3 and the function q is taken

to be unity on , 0 and zero on , s. To quantify our computed results, we denote

r0 and rs as the distances fl'om the crack tip to , 0 and , s along the 0 = 0 ray,

respectively. The distance rs will be used to characterize the integration domain.

6.3.2 Hierarchical p-version Finite Element Method

To evaluate Equations (6.31) and (6.32) we compute displacements, strains and

stresses using a hierarchical p-version finite element method. A comprehensive

description of the discretization properties as well as implementation details of the

"p-version" can be found e.g. in [141]. We like to recall as an important property

that, for problems with singularities, p-extensions converge with exponential rate

if the mesh is properly refined towards the singularities.

The element formulation used to obtain the results presented in Section 6.4

restricts us to a standard, hierarchical polynomial basis for the finite element test

and trial spaces. Although it is possible to introduce singular terms by the quarter-

point mapping technique into hierarchical p-version formulations [109] these terms
are less relevant for T-stress extraction.

The use of high order p-version elements allows domain integrals to be com-

puted during the postprocessing step on an integration mesh that can be completely

independent fl'om the finite element mesh. Examples for two different possibilities

of postprocessing meshes are shown in Figure 6.4(a) and (b). If the solution is of

sufficiently high quality so that jumps in the stresses are small, it is even possible to

have elements of the integration mesh reaching over more than one element of the

discretization without significant loss in accuracy of the domain integral. In this

case, an additional step of locating the gauss points of the integration element in

the corresponding finite element would become necessary but the implementation

can be integrated much easier in a CAD environment.

Numerical experiments show that it is not possible to reliably compute T-stress

inside the elements directly adjacent to the crack tip. This is because, no matter
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Figure 6.4: Postprocessing meshes for domain integral.

how strong the mesh refinement towards the singularity is, the solution in the

elements directly adjacent to the singularity can oscillate [111]. The oscillation

behavior is restricted to the crack tip elements and to a lesser degree for the first

layer of elements outside the crack tip elements. If the discretization error in the

remaining domain is reduced sufficiently, then path independence can be observed

in the numerical results. Therefore the domain integral can always be computed

in the first or second layer outside the crack tip elements.

To remove dependency of the obtained results fl'om the error introduced by

numerical integration we choose the number of integration points in each direction

to be 15 for all values of p-extensions in all our computations. The additional

computational cost for postprocessing of fl'acture parameters is orders of magni-

tude less than the cost of the solution process and can be neglected. With this

high integration order, numerical equivalence of the Betti-Rayleigh reciprocal and

Eshelby type contour integrals can be directly observed. It may finally be noted

that, using high order p-elements, it is very well possible to obtain high quality

results for T-stress directly fl'om contour integrals removing the need for this kind

of postprocessing completely.

6.3.3 Error Analysis and Accuracy Assessment

In theory, the contour integrals developed herein are path independent. The finite

element approximation, however, inevitably introduces discretization error. The

quality of the obtained J-integral or T-stress results does therefore depend on

the location where the path independent integral has been evaluated. Thus, it is
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important to quantify the error in computing T-stress using the path independent

integrals and furthermore assess the accuracy of the obtained numerical results.

For a given finite element model, the difference between the exact and finite

element solutions is the discretization error. Thus, taking the Betti-Rayleigh re-

ciprocal type contour integral for example, the error for T-stress, er = ]T - T Fu]

at a certain integration path 6' is given as:

Because of the different convergence rates for singular and non-singular terms

in the solution, we shall observe that the discretization error is dominated mainly

by the singular terms, if we extract our results in the singular-dominant zone.

Thus we may postulate that the error of computed T-stress for Mode I problems

(the effect of Mode II will be discussed later) in an integration domain rs away

fi'om the crack tip is:

eT _ _. __KI (6.33)

where _ is a constant term related to the discretization error for a given discretiza-

tion with a fixed polynomial degree of the shape functions. That is, the ratio of

Ki/x/_ can be factored out in cT similar to the asymptotic stress expansion. The
relative error in T-stress

r IT - T Fu I K1
erd- (6.34)

T T /77

scales with K,/(Tx/_7:71). From Equation (6.34), we shall anticipate that the ac-

curacy of the computed T-stress carl be improved predominately by reducing the

discretization error _, or by increasing the size of the integration zone (which may

not always be practical). The assertion that the relative error in T-stress scales

with the dimensionless parameter KI/(TvE7 ) is also supported by the following

observation: geometrically similar finite element models which differ only in scale

(which implies that the integration path is likewise scaled) should give numerically

identical error fi'actions in the computed T-stress (or any local stress measure-

ment).

We shall finally note that Equations (6.aa)and (6.34) provide a powerful and

useful measurement to study the accuracy of T-stress computations for finite el-

ement analyses, as will be revealed in the following numerical results. One can

certainly use the property of this error estimator to calibrate and regularize the

computed T-stress for other standard, low-order p finite element codes, but this is

beyond our discussion in this study.
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Figure 6.5: Benchmark example for T-stress computation: (a) numerical model

and (b) mesh with 6 layers of refinement (only 2 visible as shown)

6.4 Numerical Results

6.4.1 A Simple Benchmark Example

In order to evaluate the accuracy of the proposed algorithm and its numerical

outcome, it is desirable to compare it with an exact solution. Few exact solutions

are known for the T-stress. For convenience, a problem with a simple geometry

was chosen, with boundary conditions applied simulating arbitrary values of Ni,

Nii, and T. Since exact solutions are known, the problem may serve as a simple

benchmark to study the accuracy of T-stress computations.

6.4.1.1 Numerical Model

As shown in Figure 6.5(a) an edge cracked square plate with a/L = 0.5 was mod-

eled. Stresses obtained fl'om the Ki, Kii, and T related terms of the asymptotic

expansion according to Equations (5.4), (5.5), and (5.6) were imposed as bound-

ary conditions on the boundaries B_, B3, and B4, while the crack edges Bs remain

traction fl'ee. Thus the model represents a variant of an internal crack in an infinite

plate under remote loading, such that/(i, Nii, and T can be varied independently.

Because no body forces are present, the system is in equilibrium and the solution

does exist. In addition to ensure uniqueness of the solution, displacement boundary

conditions to prevent rigid body motions have to be prescribed (Figure 6.5(a)). A

finite element mesh was constructed with six layers of refinement towards the crack

tip resulting in a total of 52 elements (Figure 6.5(b)). The mesh was geometrically

refined towards the crack tip with a progression factor of 0.15 as recommended in

[140].
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6.4.1.2 Numerical Results and Discussion

For three different load combinationsKI/T = 0.1, KI/T = 1.0 and K_/T = 10.0

uniform p-extensions were performed, i.e. the polynomial degree p was changed for

all elements uniformly between 1 and 11. The largest discretization with p = 11

had 6169 degrees of fl'eedom. In the postprocessing step of all computations the

discretization error in energy norm Ilell, the error in K1 and the error in T were

computed.

The first observation to be made from the results is that the T-stress values

computed from Betti-Rayleigh reciprocal and Eshelby type integrals coincide for

all computations and all degrees of p up to machine accuracy. The equivalence

proven in Section 6.2.3 is therefore also visible in the numerical results, if the

integration order for the domain integral is sufficiently high.

In Table 6.1 values for the J-domain integral, KI, and T-stress, computed on

four different integration domains are tabulated. The domains are coincident with

the first to the fourth layer of elements surrounding the crack tip elements. The

load parameter KIlT was 1.0 and the polynomial degree of the elements was p = 6

corresponding to 1899 degrees of freedom. Since the discretization error is virtually

non-existent for this case, path independence of K1 obtained from J as well as the

T-stress tern] can be observed.

In Figure 6.6(a) (c) convergence curves of computed T-stress values are shown

for various KIlT combinations. In each figure the error in T-stress computed on

the first 1wer (L1, rs = 7.59375 x 10 -5) and the second 1wer (L2, rs = 5.0625 x

10 -4 ) of elements outside the crack tip is plotted over the number of degrees of

freedom. Each mark indicates a polynomial degree p. As an indication of the global

convergence behavior of the solution, the error in energy norm is also plotted for

all load combinations. While the energy norm curves show the typical S-shape (i. e.

exponential convergence rates until p equals the number of refinement layers), the

curves for the T-stress show exponential convergence rates throughout the entire

p-range. It is further observed that, for constant rs, the relative error in T-stress

increases with KIlT but, as apparent in Table 6.2, the convergence rate is exactly

the same for all loading values as we shall expect from Equation (6.34). Finally

it is also observed that curves for computation of T-stress on the second layer

outside the crack tip elements are slightly smoother, especially for low orders of

p, indicating that oscillatory behavior of the solution is restricted to the crack tip

and first 1wer of elements.

Table 6.2 summarizes the computed errors of Ki, T and the energy norm on

the first layer of elements away fl'om the crack tip for all three KI/T ratios. From

these values it becomes apparent that the relative error in K1 is independent of

KI/T. The convergence rate of the relative error in energy norm calculated at

p = 4 and p = 8 fl'om

l,_o-/11_811)
/3 -- _e,_ 11_411

log( )
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Table 6.1: Numerical Path Independence of J, KI, and T for p = 6 and KI/T = 1

for Benchmark Example

Path

4

3

2

1

rs J-domain K1 T

2.25 x 10 -u 0.91012 1.0001 0.9997

3.375 x 10 -3 0.91019 1.0001 0.9993

5.0625 x 10 -4 0.91026 1.0001 0.9980

7.59375 x 10 -5 0.91032 1.0002 0.9942

*plane strain problems with E? = 1.0 and u = 0.3

is fl = -2.15 for KI/T = 1 which is about the same as fl = -2.2 for K/T = 10.

We further evaluated the model with various values of KI, T, and rs for var-

ious p-extensions to obtain the results plotted in Figure 6.7. Both the order of

p and KI/(Tv/77 ) are seen to have a significant effect on the accuracy of the so-

lution. The results are expected fl'om Equation (6.34), since the relative error in

T-stress is proportional to the discretization error _ and the dimensionless parame-

ter K,/(Tv/77 ). We finally note that with p = 11, a relative error in the calculated

T-stress approaching 1 x 10 -6 % is achieved.

In the process of simulations, various KII/KI ratios were also evaluated, and

the effect of KII was found to be negligible for values up to KII/KI = 100. Thus

the effect of KII was not given further consideration in this study.

From the above we observe that for problems where T-stress is small com-

pared to KI, it is more difficult to accurately evaluate. Perhaps most significantly,

the above exercise identifies the conditions under which we may with confidence

calculate T-stress with very high accuracy.

6.4.2 Fracture Specimens

In this section, the numerical results for various fracture specimens are evaluated.

This serves two purposes: one is to demonstrate that the convergence and accu-

racy of computed T-stress can be observed easily with the p-extensions, and the

other is to compare our results for various fl'acture specimen configurations with
numerical values fl'om the literature. We detail our results for double cantilever

beam (DCB) specimens due to its practical importance in obtaining an accurate

T-stress to characterize crack turning behavior [103]. For other fl'acture specimens,

we tabulate our computed T-stress for comparison.

6.4.2.1 Double Cantilever Beam (DCB) Specimen

DCB fl'acture specimens are known to have large positive T-stress that may cause

crack path instability under pure Mode I conditions [46, 26]. In order to compare
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Table 6.2: Relative Error of K1 and T Computed at Integration Domain on First

Bayer Away From Crack Tip and Relative Error in Energy Norm for

Benchmark Example

rl = 7.59375 x 10 -5, KI/T = 1/10

relative error (%)
p DOFs

4 919 0.456 0.7693 0.0781

8 3295 4.3810 × 10 -4 2.7548 x 10 -a 0.004

11 6169 8.1660 x 10 -5 3.0 x 10 -5 0.002

rl = 7.59375 x 10 -5 , KIlT = 1/1

P

4

8

11

relative error (%)
DOFs

K1 T

919 0.456 7.693

3295 4.3810 × 10 -4 2.7548 x 10 -u

6169 8.1650 × 10 -5 2.9995 × 10 -4

II ll
0.656

0.042

0.022

rl = 7.59375 x 10 -5, KI/T = 10/1

relative error (%)
p DOFs

4 919 0.456 76.93 1.4675

8 3295 4.3810 × 10 -4 0.27548 0.073

11 6169 8.1660 × 10 -5 2.996 × 10 -3 0.046

*results are independent of the length units associated with rl and KIlT
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Figure 6.6: Convergence of T-stress and energy norm for the benchmark example.

T-stress values are computed on the first layer (L1, rl = 7.59375x 10 -5)

and the second layer (L2, rl = 5.0625 x 10 -4) of elements outside the

crack tip.
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Figure 6.7: Accuracy assessment with p-extension for the benchmark example: (a)

the relative error of calculated T-stress, Terel, versus dimensionless pa-

rameter Ki/(Tv_), and (b) the ratio of G.dT over Kff(Tv_ ) versus

the polynomial degree of the shape functions, p.

numerically computed T-stress values to those found in the literature, a DCB

configuration shown in Figure 6.8(a) with h/w = 0.2 and a/w = 0.5 was modeled.

Again a finite element mesh with six layers of refinement towards the crack tip was

constructed, as shown in Figure 6.8(b). To eliminate any influence of perturbations

fl'om point forces the load was introduced as distributed forces along one half of

the hole edges.

With the mesh fixed, a p-extension was performed, i.e. p was increased between

1 _< p _< 11. The discretization at p = 11 had 9277 degrees of fl'eedom and, because

no analytical solutions are available for this specimen, it was used as a reference

solution. /(i and T were computed in two different domains corresponding to the

first and second layer of elements away fl'om the crack tip with rl/a = 2.025 x 10 -4

and r'x/a = 1.35 x 10 -3. We note that the value of the error parameter Kz/(Tv_ )

for the integration domain at the first layer is 42.2; thus the relative error of the

reference solution is estimated to be on the order of 10 -5 % based on Figure 6.7.

The convergence of the computed normalized K1 and T-stress values can be

observed in Figure 6.9 and Figure 6.10, respectively, where for each polynomial

degree fl'om p = 3 to p = 8, Kz and T-stress computed on the two integration

domains are plotted. For engineering accuracy, i.e. to obtain a relative error of 1

percent in T-stress, a degree of p = 6 corresponding to 2917 degrees of fl'eedom

is necessary. Again path independence of the computed integrals can be observed

fl'om p = 5 and up.

To compare our results with values fl'om dill?rent sources published in the

literature, a normalized stress biaxial parameter B defined in [77] is introduced
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Table 6.3: ComputedValuesof KI, T, and B for the DCB Specimen

DCB (a/w = 0.5, h/w = 0.2)

SOURCES

Present (p = 11)

KI

3.9225

T

o-

11.5745 2.9508

Leevers and Radon [77] - 2.942

Cardew et al. [16] - 2.829

Kfouri [67] - 2.956

Fett [45] 3.9307 11.5304 2.933

where

B - (6.35)
K1

Table 6.3 summarizes the normalized stress intensity factor K,/(ax/Tg), the nor-

realized T-stress, and B with p = 11 as well as computed values from [77, 16, 67,

45]. A difference of up to 4.2% in the results for B is observed in comparison with

the sources fl'om the literature.

6.4.2.2 T-stress for Various Fracture Specimen Configurations

Computed T-stress in various fracture specimen configurations including middle

crack tension specimen (MT) and single edge notch specimen subjected to tension

(SENT) and pure bending (SENB) as shown in Figure 6.11 was evaluated. All the

meshes were constructed with six layers of refinement towards the crack tip and a

progression factor of 0.15.

Table 6.4 summarizes our computed results for KI, T-stress, and B. The results

are compared with values fl'om different sources published in the literature.

6.4.3 Discussion: Numerical Assessment of T-stress Com-

putation Using a p-version Finite Element Method

Throughout the numerical examples, we have demonstrated that using the path

independent integrals with hierarchical, p- and hp-version finite element methods

proves to be a powerful tool to obtain highly accurate numerical results for T-

stress. The convergence and accuracy of computed T-stress values are observed

easily and confidently with the p-extensions in the benchmark example of known

exact solutions, and the error correlates reliably with the error estimator, KI/x/FT.

It is thus inferred that the results presented for the fl'acture specimen geometries

are of comparable accuracy to the benchmark at equal values of Ki/x/r_, and are

thus numerically exact to the significant digits given in the tables.
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Figure 6.8: (a) Double cantilever bean, (DCB) specimen configuration, and (b) a

hp-version finite element model for DCB specimen with 6 layer refine-

ment (only 2 visible).
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Table 6.4: Computed Values of KI, T, and B for MT, SENT, and SENB Specimens

SOURCES KI _T B -- T_
o-._ o- K I

MT (2a/w = 0.3, h/w = 1.0)

Present (p = 11) 1.1232 -1.15536 -1.0286

Leevers and Radon [77] - - -1.0255

Cardew et al. [16] - - -1.026

Fett [45] - -1.1557 -1.028

Isida [61] 1.123 - -

SENT (a/w = 0.3, h/w = 12)

Present (p = 11) 1.6598 -0.61033 -0.36771

Sham [123] 1.6570 -0.61425 -0.37070

SENT (a/w = 0.5, h/w = 12)

Present (p = 11) 2.8246 -0.42168 -0.14929

Sham [123] 2.8210 -0.43142 -0.15293

SENB (a/w = 0.3, h/w = 12)

Present (p = 11) 1.1241 -0.079177 -0.070436

Sham [123] 1.1220 -0.082404 -0.073444

SENB (a/w = 0.5, h/w = 12)

Present (p = 11) 1.4972 0.39749 0.26549

Sham [123] 1.4951 0.39112 0.26160
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Figure 6.11: Various fl'acture specimen configurations used for T-stress computa-

tion.

6.5 FRANC3D/STAGS Results

Both the Betti-Rayleigh reciprocal and Eshelby types of domain integrals were

also implemented in the FRANC3D/STAGS software program. We note that the

polynomial degree of shape functions for the quadrilateral shell element used in

FRANC3D/STAGS is the lowest, i.e., p = 1. Thus, to obtain an acceptable

accuracy for T-stress, we need to introduce a highly focused mesh near the crack

tip and/or evaluate the domain integral sufiqciently away fl'om the crack tip.

6.5.1 Two-Dimensional Problems

The DCB specimen was studied using FRANC3D/STAGS. An all-quadrilateral

element meshing algorithm developed by Potyondy et al. [107] was used to generate

a graded mesh with a high mesh density near the crack tip and coarser away fl'om

the crack tip. Figure 6.12 shows a graded finite element mesh with a crack tip

template. Computed values of/(i and T evaluated at the third layer away fl'om

the crack tip (rs/a = 0.02) are within 0.8 and 1.2% of the reference solutions in

Table 6.3, respectively.
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tip template

Figure 6.12: A focused finite element mesh used in FRANC3D/STAGS.

6.5.2 Thin Shell Problems

The methods developed herein are mainly for two-dimensional linear elastic prob-

lems. Further study is needed to derive its Lagrangian counterpart for shell struc-

tures subjected to large displacements and rotations.

6.6 Summary

Two types of path independent integrals for T-stress computations, one based

on the Betti-Rayleigh reciprocal theorem and the other based on Eshelby's en-

ergy momentum tensor were studied. Analytical as well as numerical equivalence

between the two integrals was found. To quantify and assess the accuracy of com-

puted values, a novel error estimator for T-stress was proposed. Specifically, it

was found that the error of the computed T-stress is proportional to the ratio of

stress intensity factor divided by the square root of the characteristic dimension of

the integration domain where the path independent integral is evaluated. Using a

highly accurate hierarchical p- and hp-version finite dement code, the convergence

and accuracy of computed values were observed easily and confidently, and the er-

ror of the computed T-stress con'dated reliably with the proposed error estimator.

We conclude that the path independent integrals, in conjunction with hierarchical,

p- and hp-version finite element methods, provide a powerful tool to obtain highly
accurate numerical results for T-stress.

We then evaluated numerical results using the FRANC3D/STAGS program.

Because the polynomial degree of the shape functions of the shell dements was the

lowest (i.e., p = 1), a highly focused mesh near the crack tip and a remote inte-
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gration path were needed to extract the T-stress from the finite element solutions

without losing too much accuracy. Numerical results showed that the errors in T-

stress for DCB specimens could be kept well below 2% using FRANC3D/STAGS.



Chapter 7

Curvilinear Crack Growth

Simulations

Curvilinear crack growth in coupon tests and in full-scale curved panel tests are

analyzed in this chapter. Crack growth direction is predicted using the directional

criteria developed in Chapter 5. The predicted crack trajectories are compared

with those observed in the tests.

7.1 Curvilinear Crack Growth Simulations For

DCB Fracture Specimens

Simulations of crack growth in double cantilever beam (DCB) fl'acture specimens

were performed. The predicted crack trajectories were compared with the exper-

imental measurements. Among all the possible parameters that could affect the

crack trajectory prediction, only T-stress, re, fl'acture toughness orthotropy, and

the length of the crack growth increment were examined.

7.1.1 Description of Experiment

DCB specimens made of 0.09 inch thick, 2024-T3 aluminum alloy were tested at

the NASA Langley Research Center in cooperation with the McDonnell Douglas

Company (now Boeing). A brief description of the tests is presented below. More

information about the fracture tests carl be found in [103, 101, 104].

The dimensions and material properties of the test specimens are shown in Fig-

ure 7.1. Stable crack growth in the L-T and T-L orientation under a monotonically

increasing load was conducted. Fatigue crack growth in the L-T orientation under

a low stress level of cyclic loading was performed. The test matrix is summarized

in Table 7.1. Only one test per configuration was performed.

The final cracked configurations in the L-T orientation are shown in Figure 7.2.

The crack path observed in stable crack growth was different from that in fatigue

crack propagation. For specimens under stable tearing, the crack turned sharply

130
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Figure 7.1: The DCB specimen configuration.

Table 7.1: Test Matrix for DCB Specimens

Specimen ID Initial Crack (in.) Type of Crack Growth

2024LT-4 5.507 stable tearing

2024TL-5 5.47 stable tearing

2024LT-6 5.104 fatigue crack growth
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(a) (b)

Figure 7.2: (a) Stable tearing (2024LT-4) and (b) fatigue crack growth (2024LT-6)

in the L-T orientation observed in DCB specimens (after [101]).

away from its initial crack tip. For specimens subjected to fatigue loading, a much

smoother crack path was observed.

7.1.2 Description of Simulation

Curvilinear crack growth analyses were conducted using the FRANC3D/STAGS

software program. As described in Section 1.3, to simulate crack growth where

the crack trajectory is not known a priori, continual updating of the geometry is

required. The procedure of simulating crack growth consists of the following steps

[106,108]:

step 1: generate a STAGS finite element model from FRANC3D.

step 2: obtain the equilibrium state by executing the STAGS code.

step 3: compute the fracture parameters and determine the direction of crack

growth.

step 4: decide the amount of crack growth extension and propagate the crack.

The process is repeated until a suitable termination condition is reached. The

crack growth alters the geometric model in FRANC3D and leads to localized mesh

deletion. The deletion region is remeshed automatically using an all-quadrilateral

element meshing algorithm [107].



133

Stressintensity factors, K1 and KII, were computed using the equivalent do-

main J integral with the mode-separation method [15]. T-stress was computed

using the equivalent domain integral method derived fi'om the Betti-Rayleigh re-

ciprocal theorem (Equation (6.15)). Several integration paths about the crack tip

were evaluated to assure the accuracy of the computations. The propagation angle

was predicted based on the maximum tangential stress theory developed in Chap-

ter 5, that is, Equations (5.17) and (5.24) for the isotropic and orthotropic media,

respectively. We assumed that both fatigue and stable crack growth in the DCB

specimens can be analyzed using linear elastic fracture mechanics (LEFM). This

assumption may not hold for stable crack growth. We will further discuss this
issue in Section 7.3.

7.1.3 Numerical Results

7.1.3.1 Effect of T-stress and rc

The specimens under stable crack growth were analyzed first. The crack was grown

in 0.2 inch increments. Crack growth direction was predicted by the isotropic di-

rectional criterion, i.e., Equation (5.17). Figure 7.3 depicts four predicted crack

trajectories with various magnitudes of rc and the experimental measurements.

Figure 7.4 shows the computed deformed shapes and the corresponding finite ele-

ment meshes used in curvilinear crack growth simulations. Predicted and measured

results shown in Figure 7.3 indicate that:

1.

.

The predicted crack path for r_ = 0 coincides with the straight line ahead of

the initial crack. For this special case, we note that the directional criterion

reduces to the Erdogan and Sih's criterion [41].

For r_ = 0.05 inch, the predicted crack path initially follows a zigzag along

the straight path, but deviates fi'om it at about 1.6 inches of crack extension.

3. For r_ _> 0.06 inch, predicted crack paths turn sharply away fi'om the initial

crack tip.

4. The case with r_ = 0.09 inch best correlates the experimental data and

numerical results for stable tearing.

5. Notable difference between the measured crack paths in the L-T and T-L

orientations are observed.

Similar trends were observed for fatigue crack growth. Figure 7.5 plots three

predicted crack trajectories with various magnitudes of rc and the experimental

measurements. The case with r_ = 0.06 inch best correlates the experimental data

and numerical results for fatigue crack growth.
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Figure 7.3: Predicted and measured crack trajectories for DCB specimen under

stable crack growth: (a) overall crack trajectories, and (b) crack paths

in the focused region (Equation (5.17) with various magnitudes of re;

Aa = 0.2 in.).
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Figure 7.4: Computed deformed shapes and the corresponding finite element

meshes used in the curvilinear crack growth simulations in DCB spec-

imens (isotropic case with rc = 0.09 inch).
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Figure 7.5: Predicted and measured crack trajectories for DCB specimen under

fatigue crack growth (Equation (5.17) with various magnitudes of re;

Aa = 0.2 in.).

7.1.3.2 Length of Crack Growth Increment

For LEFM problems, no adaptive scheme is currently implemented to control the

length of curvilinear crack growth increment. Instead, during the simulation pro-

cess, the analyst needs to decide and specify the amount of crack extension at

the crack tip. To investigate possible effects of the crack growth increment on

crack trajectory prediction, the crack growth simulation was performed again with

Aa = 0.1 inch for r_ = 0.09 inch. The length of crack growth increment has a

minor effect on the crack trajectory prediction as shown in Figure 7.6.

7.1.3.3 Fracture Toughness Orthotropy

From the laboratory observation, the specimen in the L-T orientation turned

sharper than that in the T-L orientation under stable tearing. This is thought

to be related to the possible difference between the fl'acture resistance along the

transverse (T) direction compared to that along the longitudinal (L) direction.

In subsequent analyses, a simple elliptical function presented in Section 5.3.4 was

used to incorporate the effect of fl'acture orthotropy. The fl'acture toughness was

assumed to be 10% higher in the T than in the L direction. As shown in Fig-

ure 7.7, the predicted crack trajectory in the L-T orientation agrees better with

the experimental measurements than the isotropic prediction. However, the pre-

dicted trajectory in the T-L orientation deviates fl'om the observed crack path.
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Figure 7.6: Predicted and measured crack trajectories for DCB specimen under

stable crack growth: effect of the length of crack growth increment

(Equation (5.17) with rc = 0.09 inch).

7.1.4 Concluding Remarks for Curvilinear Crack Growth

Simulation in DCB Specimen

Curvilinear crack growth in thin, metallic DCB specimens was studied. For this

specific configuration, cracks showed a tendency to turn away fi'om the initial

crack tip under pure Mode I conditions. The crack growth directional criterion,

incorporating the T-stress ef[_ct, was capable of capturing the essence of crack

turning under such circumstance. The predicted results were in good agreement

with the experimental measurements.

The fracture toughness orthotropy was introduced to explain the difference be-

tween the measured crack paths in the L-T and T-L orientations. The orthotropic

directional criterion showed some promise to correlate the experimental data, but

some disagreement between predicted and measured results was observed for the

specimen in the T-L orientation. One possible explanation is that the magnitude of

rc along the T direction may be different than that along the L direction. Incorpo-

rating different magnitudes of r_ along T and L directions could certainly provide

better correlation with experimental results. But additional tests and analyses

need to be conducted to justify this assertion.
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Figure 7.8: Structural features of a narrow body fuselage panel (modified after

[85]).

7.2 Curvilinear Crack Growth Simulations For

Fuselage Structures

Simulations of curvilinear crack growth in a generic narrow body fuselage panel

were performed. The predicted crack trajectories were compared with the mea-

sured values fi'om a full-scale pressurization test. The problem demonstrates the

applicability of the direction criteria developed herein for predicting curvilinear

crack growth in fuselage structures.

7.2.1 Description of Experiment

A narrow body fuselage panel with tear straps, stringers, stringer clips, and frames

was tested by the Boeing Commercial Airplane Group. Skins and tear straps were

made of 0.036 inch thick, 2024-T3 clad aluminum alloy. Stringers, frames, and

stringer clips were made of 7075-T6 clad aluminum alloy. The tear straps were

hot-bonded to the skins at midbay and at each frame station. The structural

features of the test panel are shown in Figure 7.8. More information about panel

dimensions can be found in [106, 48].

The panel had a 5.0 inch initial saw cut in the T-L orientation centered on

the midbay tear strap and just above the stringer tear strap. The saw cut went

completely through both the skin and midbay tear strap. The panel was inserted

into a test fixture with a radius of curvature of 74 inches to match narrow body

airplanes. A cyclic pressure of 7.8 psi was applied to propagate the crack. During

the test, the positions of the crack tips were recorded. The detailed test data can

be found in [106].
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Figure 7.9: Finite element model for the narrow body fuselage panel.

7.2.2 Numerical Model

The entire curvilinear crack growth simulation consists of more than 20 inches of

crack extension. As a result, using a global-local hierarchical modeling approach

could require continual updating of the boundary conditions fl'om the preceding

model in the hierarchy due to the crack growth. This would increase efforts sub-

stantially in performing the numerical analyses. For this specific problem, only

internal pressure was applied to the structure, thus a simple numerical model us-

ing symmetric boundary conditions might suffice to simulate the panel test.

In this study, a 4-stringer-bay wide and 2-fl'ame-bay long panel was analyzed.

All structural components including skins, stringers, and fl'ames were modeled

by quadrilateral shell elements. Each node of the shell element has six degrees

of fl'eedom. A typical finite element mesh used in the simulation is shown in

Figure 7.9.

Geometrically nonlinear analyses were performed. Pressure loading was applied

on the skin of the shell model. Symmetric boundary conditions were imposed on

all the boundary edges of the model to simulate a cylinder-like fuselage structure.

Uniform axial expansion was allowed at one longitudinal end. On this boundary

edge, an axial force equal to (PF_/2)- L was assigned where P is the applied

pressure, f_ is the radius of the panel, and L is the arc-length of the edge.

7.2.3 Fracture Parameter Evaluation

Deformation and stress fields neat" the crack tip were used to compute fl'acture pa-

rameters for crack growth simulations. The modified crack closure integral method
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wasusedto computethe membraneand bendingstressintensity factors (KI, KII,

kx, ks) [106, 142]. The crack growth directional criteria, Equations (5.17) and

(5.24) for the isotropic and orthotropic media, were used to predict the propaga-

tion angle in thin shell structures.

The equivalent domain integral method for T-stress developed in Chapter 6

is only valid for two-dimensional problems. The derivation of its counterpart for

shell structures subjected to large displacements and rotations is not yet available.

Instead, a simple displacement correlation method was used to evaluate the T-

stress [69, 134, 104].

7.2.4 Numerical Results

7.2.4.1 Effect of T-stress and rc

The effect of T-stress and rc on crack trajectory prediction was studied first.

Crack growth direction was predicted by the isotropic directional criterion (Equa-

tion (5.17)). Figure 7.10 plots the predicted crack trajectories with r_ = 0 and

r_ = 0.09 inch as well as the experimental measurements. Figure 7.11 shows the

computed deformed shapes during curvilinear crack growth. Bulging caused by

the applied pressure is observed. Moreover, severe flapping is predicted as the

crack turns. Figure 7.12 shows the computed stress intensity factors and T-stress

versus the half crack extension at the right crack tip. The sign conventions of

stress intensity factors follow those in [106]. Predicted results suggest:

. The T-stress has a very mild influence on the early crack trajectory prediction

because of its small magnitude. But as the crack approaches the tear strap,

T-stress increases and plays an important role in the crack turning prediction.

For the case with r_ = 0.09 inch, a sharp turning caused by T-stress is

predicted as the crack approaches the tear strap.

. The computed fracture parameters for r_ = 0 and rc = 0.09 inch are compa-

rable at the early stage of curvilinear crack growth. However, sharp turning

as the crack approaches the tear strap alters the deformation and stress fields.

This drastically changes the computed values of fi'acture parameters.

. Predicted crack paths from both numerical simulations at the right and left

crack tips are almost symmetric about the midbay, but the measured crack

paths are not. This observation gives a preliminary indication of the experi-

mental scatter that might occur in the panel test.

7.2.4.2 Effect of Fracture Toughness Orthotropy

The predicted crack growth trajectories depicted in Figure 7.10 are comparable

to the experimental measurements, but with some discrepancy. The disagreement
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Figure 7.10: Comparisons between predicted and measured crack trajectories

(isotropic directional criterion with various magnitudes of re).
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Figure 7.11: Computed deformed shapes during curvilinear crack growth (isotropic

case with rc = 0.09 inch, magnification factor = 2.0).
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Figure 7.13: Comparisons between predicted and measured crack trajectories

(isotropic and orthotropic cases with rc = 0.09 inch).

during early stages of crack growth might be related to the fracture toughness

orthotropy of the fuselage skins.

In subsequent analyses, the orthotropic directional criterion, i.e., Equation (5.24),

was used to predict the propagation angle. From the coupon test results, the fl'ac-

ture toughness for this material and thickness was about 100 ksi_ in the L

direction and 105 120 ksix/Tn_ in the T direction [106]. Thus, the fracture tough-

ness was assumed to be 10% higher in the T than in the L direction. The predicted

crack trajectories with rc = 0.09 inch were compared with those fl'om the isotropic

prediction and experimental measurements. As shown in Figure 7.13, during early

stages of crack growth, the predicted trajectories for the orthotropic case agree

better with the experimental measurements than the isotropic case. Crack growth

simulation with fracture orthotropy also predicts crack turning as the crack ap-

proaches the tear strap. Yet, when the crack grows further into the tear strap

region, the inclusion of fracture orthotropy adversely alters the crack path predic-

tion and does not predict flapping as observed in the panel test.

Several possible reasons may explain why the current methodology including

the fracture toughness orthotropy does not predict the desired flapping and should
be examined in future research:

1. Characteristic feature of fracture orthotropy in the tear strap region The
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material orientation in the tear strap differs from that in the skin (i.e., the
transversedirection in the tear strap is along the longitudinal direction of
the skin and viceversa). As a result, the material characteristicsin this over-
lapped region may behavelike a quasi-isotropicmaterial with lessfl'acture
toughnessorthotropy.

2. Occurrenceof debonding betweenthe skin and tear strap In the current
model,weassumethat the skinandtear strap areperfectlybonded. However,
asthe crack growsinto this region, the adhesivebond betweenthe skin and
tear strap is likely to fail. This inevitably alters the local crack tip stress
fields and would consequentlyaffect the crackgrowth behavior.

3. Thin-shell representationof three-dimensionalbehavior The thin-shell ap-
proximation doesnot capture all the three-dimensionalcomplexitiesof the
problem in the vicinity of the tear strap, particularly in the cracktip region.
Further study on three-dimensionalcrack growth simulations is neededto
quantify the three-dimensionaleffecton crackturning prediction.

4. Sourcesof error from the computedfracture parameters Accuratestressin-
tensity factor and T-stress evaluations in this region are crucial to predict

crack turning. Current crack growth simulations use a low-order polyno-

mial degree of shape functions for thin-shell finite element analyses and use

a displacement correlation method to extract the T-stress term fl'om the fi-

nite element solutions. Further study using adaptive and higher order shell

finite element analyses would improve the accuracy of numerical computa-

tion. Other numerical methods, for example, path independent integrals for

geometrically nonlinear shells would also improve the accuracy of fracture

parameter evaluations.

5. Validity of the LEFM approach The crack growth directional criterion and

its subsequent curvilinear crack growth simulations explicitly assume that the

crack is grown under small scale yielding conditions. Yet, as the length of

the fatigue crack extends to a sufiqcient amount, stable tearing and extensive

plasticity are likely to occur. The active plastic zone and accumulated plastic

wake due to stable tearing would likely affect the crack growth prediction.

6. Validity of the magnitude of rc In the current study, the parameter rc is as-

sumed to be a constant magnitude during the entire curvilinear crack growth

simulations. Also the same constant magnitude of r_ is used in the T and L

directions. The magnitude of r_ used in the current simulation (0.09 inch)

is mainly based on the predicted results that best correlate the crack tra-

jectories observed in the DCB tests and the isotropic results that predict

crack flapping in the current fuselage model. Further study on the appro-

priate experimental methods and numerical simulations for determining the

magnitude of r_ is needed to validate the current approach.
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7.2.5 Comparisons with Previous Studies

Potyondy et al. [106, 108] and Chen et al. [21] have reported numerical simulations

for this problem previously. Both studies analyzed early curvilinear crack growth

but did not address the issue of sharp turning as the crack approaches the tear

strap. It is, nevertheless, of interest to compare these results with the current

prediction. This serves two purposes: one is to assess the accuracy of the simulation

through comparisons with independent numerical simulations and the other is

to show alternate modeling representations that may affect the crack trajectory

prediction.

In Potyondy et al. [106, 108] and Chen et al. [21], a global-local hierarchical

modeling approach was used to model the panel test. Three hierarchical modeling

levels were employed, comprised of a global shell model, a 6x6 bay stiffened panel

model, and a 2x2 bay stiffened panel model. Crack growth was only performed

in the 2x2 bay model, the lowest level in the hierarchy. The kinematic boundary

conditions on the 2x2 bay model were not updated during crack growth. Also, the

boundary conditions applied to the global shell model corresponded with an open

cylinder. Thus, the longitudinal stress in this numerical model is expected to be

less than that in the test fixture, since the test fixture is a closed cylinder.

The directional criterion used in Potyondy et al. and Chen et al. corresponds

to the Erdogan and Sih directional criterion [41], i.e., Equation (5.18); thus com-

parisons are made with the isotropic prediction with rc = 0. Figure 7.14 shows the

predicted crack growth trajectories from previous and current studies as well as

experimental measurements. We note that the initial crack location in Potyondy's

simulations was modeled at 0.45 inch away from the intersection of the skin and

stringer due to limitations in the previous version of the FRANC3D program. Fig-

ures 7.15 and 7.16 show the computed stress intensity factors at the right crack

tip in comparison with [21] and [106, 108], respectively. From these results, we

conclude:

The applied axial force used to model the longitudinal stress caused by a

closed cylinder has little influence on the computed stress intensity factors.

This can be seen from the computed values shown in Figure 7.15 at zero

crack extension; two numerical simulations at this stage basically represent

the same boundary conditions and crack configuration except an axial force

was applied in the current model.

The fact that the kinematic boundary conditions were not altered during

crack growth in the previous studies has a mild affect on the crack trajectory

prediction and stress intensity factor computation. In the previous studies,

the kinematic boundary conditions used in the lowest level in the hierarchy

were obtained from a global model with an initial 5.0 inch crack. We can

certainly conclude that the driving force for this case would be less than the

one with updated boundary conditions as the crack grows. This is properly

reflected on the computed K1 values shown both in Figures 7.15 and 7.16.
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Figure 7.14: Comparisons between predicted and measured crack trajectories

(isotropic directional criterion with various magnitudes of re).

The issue seems to have little effect on the computed values of KH, since

they remain more or less the same for all cases. This leads to a lower ratio of

Kn/KI in the current model with updated boundary conditions. As a result,

more shallow crack trajectories are predicted in the present study. Neverthe-

less, the computed fl'acture parameters are comparable with previous results;

thus, a similar fatigue life is anticipated.

7.2.6 Concluding Remarks for Curvilinear Crack Growth

Simulation in Narrow Body Fuselage Panel

Curvilinear crack growth in a generic narrow body fuselage was studied. Com-

parisons with experimental measurements suggest that the fracture toughness or-

thotropy plays an important role in predicting the early crack growth trajectories.

The subsequent crack growth after the initial crack deflection followed a trajectory

where the local stress states are of a Mode I type. Thus, like crack growth in DCB

specimens, crack turning and flapping as the crack approaches the tear strap is

highly related to the T-stress.
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Figure 7.15: Computed stress intensity factors versus half crack extension. The

hollow and solid markers denote the computed stress intensity factors

from the current isotropic prediction with rc = 0 and those from Chert

et al. [21], respectively.
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151

The predicted results basedon the proposedmethodologyshowthe potential
to characterizecurvilinear crack growth, but further studiesas discussedin Sec-
tion 7.2.4.2needto beconductedto fully assessits applicability aspart of a damage
tolerancemethodology.

7.3 Discussion: Elastic-Plastic Curvilinear Crack

Growth and Residual Strength Prediction

The above curvilinear crack growth simulations explicitly assume that the crack is

grown under small scale yielding conditions. To simulate elastic-plastic curvilinear

crack growth, one can use the predicted curvilinear crack path as the predefined

crack path and stable crack growth and residual strength analyses can be performed

accordingly. The procedure was used in Chen et al. [21, 20] to study the trajectory

effect on residual strength prediction.

A more rigorous approach is to use a directional criterion based on the current

elastic-plastic states at crack tips directly. A procedure for mapping the state

variables fi'om one finite element mesh to another is then performed as the crack

propagates. A plane stress, non-self-similar elastic-plastic crack growth simulation

based on the CTOD directional criterion discussed in Section 5.4.2 in conjunction

with the CTOA crack growth criterion has recently been implemented [62]. The

predicted results are comparable to those observed in the Arcan fi'acture tests.

Future work is needed to assess the applicability of the mapping algorithm and

direction criterion to fuselage structures under stable tearing.

7.4 Summary

The directional criteria developed in Chapter 5 were used to predict curvilinear

crack growth in coupon tests and in full-scale fuselage panel tests. The predicted

trajectories were in good agreement with those observed in the tests.

The influence of various parameters on the crack trajectory prediction was

studied. Both T-stress and fi'acture orthotropy were found to be essential to predict

the observed paths. The proposed methodology shows its potential to predict crack

turning and flapping that can be used as part of a damage tolerance methodology.



Chapter 8

Summary, Conclusions, and
Recommendations for Future

Work

This chapter summarizes the contributions of this thesis, draws conclusions, and

where appropriate, provides recommendations for future work.

This dissertation begins with a description of aging aircraft problems faced

by the aircraft community. Aging of aircraft may significantly reduce structural

integrity and residual strength below an acceptable level. This concern serves

as the primary motivation for the dissertation. The objective is to develop an

accurate structural analysis methodology and a useful and usable software tool for

predicting the structural integrity and residual strength of pressurized, thin-shell

structures.

Background material related to structural integrity of aircraft fuselages and

effective simulations of arbitrary crack growth is discussed in Chapter 1. This

serves as a departing point to study simulations of fl'acturing processes in thin-

shell structures. The dissertation is then divided into two parts to facilitate the

discussion. Chapters 2 through 4 deal with the crack tip opening angle (CTOA)

fl'acture criterion obtained fl'om coupon tests to the prediction of fl'acture behavior

and residual strength of built-up aircraft fuselages. Chapters 5 through 7 discuss

relevant issues for crack trajectory prediction methodologies to improve structural

integrity of airfl'ames. Summaries, conclusions, and recommendations for future

work of each part are presented below.

152
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8.1 Part One: Elastic-Plastic Crack Growth Sim-

ulation and Residual Strength Prediction

8.1.1 Chapter 2: Theory for CTOA-Driven Elastic-Plastic

Crack Growth and Residual Strength Analysis

Various fracture mechanics methods for simulating elastic-plastic crack growth and

predicting residual strength of thin-sheet metallic structures are reviewed and cri-

tiqued in Chapter 2. The fl'acture analysis methods include linear elastic fl'acture

mechanics (LEFM) and elastic plastic fl'acture mechanics (EPFM) versions of KR,

GR, JR, (_R, T_, and CTOA using two-dimensional and three-dimensional anal-

yses. Among the methods, the CTOA fl'acture criterion with three-dimensional

elastic-plastic analyses is found to be superior because of its relative independence

of the geometry of the structure, the length of the crack, and the presence of mul-

tiple cracks. Elastic-plastic crack growth, link-up of multiple cracks, and residual

strength analyses using the CTOA fl'acture criterion are discussed.

8.1.2 Chapter 3: Residual Strength Analysis of a Flat Panel

with Self-Similar Elastic-Plastic Crack Growth

In Chapter 3, numerical simulations of fiat panel tests are conducted by using thin-

shell finite element analyses. The CTOA fl'acture criterion is used to characterize

elastic-plastic crack growth. Two sets of fl'acture tests are simulated: one with a

single crack but different widths and the other with multiple cracks.

Predicted results of the fiat panel simulations with a single crack show two dis-

tinct failure phenomena. For small specimens, plastic zones reach the fl'ee bound-

ary and the limit load is attained due to net section yielding. For large speci-

mens, plastic zones are well confined by the elastic region and residual strength is

reached due to fl'acture instability. Results of predicted residual strength are com-

parable to experimental measurements. Yet as the width of the panel increases,

the relative difference between experimental measurements and numerical predic-

tions increases. This discrepancy is associated with the three-dimensional nature

of the stresses around the crack tip, a result of constraint effects due to the finite

thickness of the panels. A plane strain core concept is proposed to incorporate the
three-dimensional constraint effects into two-dimensional as well as thin shell anal-

yses. Predicted results with the plane strain core follow those of three-dimensional

analyses and experimental measurements for small and large panels.

Predicted residual strength of small fiat panels with multiple cracks agrees well

with experimental measurements. A loss of residual strength due to the presence

of multiple small cracks is observed.
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8.1.3 Chapter 4: Residual Strength Analysis of Fuselage

Structures with Self-Similar Crack Growth

Chapter 4 examines the feasibility and validity of the analysis methodology to

predict residual strength of pressurized fuselage structures that are subjected to

widespread fatigue damage (WFD). The first part of the chapter uses a relatively

simple built-up configuration to examine the effect of lead crack sizes, multi-site

damage (MSD), and material thinning due to corrosion damage. Predicted results

indicate a 21.8 to 28.0% loss of residual strength due to the presence of small MSD.

Coupling of MSD and corrosion damage leads to the most severe damage scenario.

The second part of the chapter describes analyses of fuselage panels tested in a

wide body, pressure test fixture. The objective is to validate the analysis method-

ology by direct comparison of numerical and experimental results. A global-local

hierarchical modeling strategy is used to analyze the panel tests. This modeling

strategy allows one to obtain sufficient accuracy of computed values with reason-

able computer resources.

Predicted stress distributions in the vicinity of the lap joint are compared with

strain gage readings. Major results from the strain gage comparison are:

• For global and local models of about the same coarse mesh density, the pre-

dicted results converge quickly and agree with experimental measurements.

Results with a much higher mesh density that is suitable for stable crack

growth analysis disagree with the rest of the numerical predictions and ex-

perimental measurements. The discrepancy is related to the idealized rep-

resentation of the two-noded spring element for the rivet connection. The

problem is effectively overcome by generating distributed connections be-

tween the two-noded spring element and the surrounding shell elements.

Elastic-plastic crack growth analyses using the CTOA fracture criterion are

conducted. Numerical results for the case with and without MSD are compared

to experimental observations. Two key factors are found to be crucial for accurate

prediction of stable crack growth and residual strength of the wide body panel

tests. One is to incorporate the residual plastic deformation left by the fatigue

crack growth, and the other is to consider the failure of other structural elements

during stable crack growth. The specific highlights are:

The residual plastic deformation or the plastic wake from fatigue crack

growth has a strong effect on stable crack initiation but a mild effect on

residual strength prediction. Neglecting plastic wake effect leads to a totally

erroneous prediction of the early stable crack growth.

The breakage of the inner tear strap, categorized as possible failure of other

structural elements during stable crack growth, is crucial to residual strength

prediction. For all the analyses conducted, the occurrence of the broken tear

strap reduces the predicted residual strength by 24% to 30%.
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Both observedand predicted resultsof the wide body panel tests again show
substantial reduction of residualstrength dueto the occurrenceof MSD.

8.1.4 Recommendations for Future Work

For cracks in a pressurized fuselage, the out-of-plane deformation or bulging at

the crack edges is an essential characteristic feature of the displacement fields.

The current analysis methodology assumes that the same critical CTOA deter-

mined fl'om fiat panel tests with guide plates suffices to characterize the fl'acturing

processes. To fully justify this assumption, laboratory tests that generate the out-

of-plane deformation during stable crack growth need to be conducted s. Numerical

simulations of these laboratory tests using geometrically and materially nonlinear

thin-shell and three-dimensional crack growth analyses will shed new light on the

possible invariance of the CTOA fl'acture criterion to crack bulging.

Constraint effects due to finite thickness of the panels are currently incorpo-

rated into thin-shell finite element analyses by an ad-hoc fashion, that is, using

a plane strain core concept along the tearing crack path. Fully three-dimensional

analyses or mixed thin-shell and three-dimensional analyses can automatically cap-

ture the three-dimensional constraint effect and eliminate the need for the plane

strain core. A mixed model consisting of thin shell and three-dimensional ideal-

izations as illustrated in Figure 8.1 seems to be a very attractive approach. Using

this approach, fl'acture behavior around the crack tip region can be described ac-

curately by three-dimensional analyses while thin shell idealizations may apply to

the remote regions where the through thickness effect can be ignored.

The current model does not faithfully represent crack growth in the vicinity

of rivets. Distributed connections may be adequate to represent load transfer

through the rivets, but may not have sufficient accuracy to characterize fl'acturing

processes. Further laboratory fl'acture tests and analyses of various lap-jointed

configurations need to be conducted to quantify its effect on stable crack growth

and residual strength prediction.

The current analysis procedures of incorporating the residual plastic deforma-

tion for stable tearing do not include the effect of crack face contact. This leads

to a much higher crack-opening pressure in comparison with 2D plane stress re-

suits and laboratory observations. Further study is needed to quantify its effect

on residual strength prediction.

Widespread fatigue damage (WFD) has two subsets: multi-site damage (MSD)

and multi-element damage (MED). The effect of MSD on residual strength can be

analyzed and accurately predicted by the current methodology. The MED is yet to

be explored rigorously. Also, the similar scenario including static or dynamic failure

of other structural elements during stable crack growth needs further investigation.

A proper mechanism to initiate and propagate damage in other structural elements

SThe MT specimen with the width larger than 24 inch but without guide plates

seem to be a plausible candidate.
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J crack

transitionfrom shell
to 3D solid

3Dsolid

Figure 8.1: Illustration of mixed modeling of thin shell and 3D solids.

needs to be included in stable crack growth analyses.

Material thinning due to corrosion damage that may occur in aging aircraft is

modeled through a uniform thickness reduction over the skin at the lap joint. More

detailed analyses are needed to assess its applicability in characterizing corrosion

damage.

Finally, the methodology developed herein is mainly for thin-sheet metallic

structures. Its applicability to thick, heavily loaded structures (for example, wings)

or to different materials (for example, composites) is yet to be determined.

8.2 Part Two: Curvilinear Crack Growth Simu-

lation

8.2.1 Chapter 5: Theory for Curvilinear Crack Growth in

Planar and Thin Shell Structures

This chapter begins with the motivation for using the crack turning phenomenon to

improve the structural integrity of fuselage structures. To predict a crack trajectory

that is not known a priori, a criterion for predicting the crack propagation direction

is required.

The maximum tangential stress theory is used as a starting point to evaluate

the direction of crack growth. Full stress and displacement fields in two-dimensions

and asymptotic fields in thin plates subjected to bending are outlined.

The crack growth direction criterion based on the two-dimensional, linear elas-



157

tic crack tip fields is assumed to be sufficient to handle thin shell problems under

the LEFM conditions. Singular as well as non-singular constant stress fields are

included in evaluating the tangential stress near the crack tip. A directional crite-

rion based on the maximum tangential stress up to the order of the T-stress term

is derived. The specific highlights include:

The predicted propagation angle is determined based on re, KI, KII, and

and T. A predicted propagation angle diagram is presented using a non-

dimensional parameter T where T = (8T_)/(3K,).

• Under pure Mode-I and positive T-stress conditions, the crack path instabil-

ity will occur when r'c > (9K_)/(128rcTU).

Under general mixed-mode conditions, the criterion predicts a bigger prop-

agation angle under positive T-stress and a smaller angle under negative

T-stress. The criterion reduces to the Erdogan and Sih criterion when T =

0 or r_ = 0.

The criterion is then extended to include the eff'ect of fl'acture toughness or-

thotropy. A simple elliptical function is used to characterize the anisotropic fl'ac-

ture resistance in different material orientations. The effect of fl'acture toughness

orthotropy ratio and the material orientation angle on the predicted propagation

angle is examined.

The rest of the chapter examines possible extensions of the current crack growth

direction criterion to handle geometrically and materially nonlinear problems.

For elastic deformations of arbitrary magnitude, the extensions rely on finding

the Lagrangian counterparts of conservative integrals, well-defined under elastic

states with infinitesimal deformations, in the context of finite elastic deformations.

The fl'acture parameters are then related to these conservative integrals.

For elastic-plastic problems two directional criteria are examined: one based

on the HRR fields and the other based on the crack tip opening displacement

(CTOD) concept. The study concludes that neither the HRR type extension of

the maximum tangential stress theory nor the CTOD based directional criterion is

currently sufficient to fully characterize the direction of elastic-plastic crack growth.

8.2.2 Chapter 6: Numerical Evaluation of T-Stress

Numerical methods to obtain accurate T-stress for two-dimensional as well as thin

shell problems are the main theme of Chapter 6. The specific highlights are:

• Two types of path independent integrals for T-stress evaluations are pre-

sented: one based on the Betti-Rayleigh reciprocal theorem and the other on

Eshelby's energy momentum tensor. The analytical and numerical equiva-

lence between the two is found.
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A novel error estimator for T-stress is proposed to quantify and assess the

accuracy of computed values. Specifically, it is found that the error of the

computed T-stress is proportional to the ratio of stress intensity factor di-

vided by the square root of the characteristic dimension of the integration

domain where the path independent integral is evaluated.

Numerical accuracy in evaluating T-stress using the path independent inte-

gral method is assessed by highly accurate two-dimensional p- and hp-version

adaptive finite element analyses.

8.2.3 Chapter 7: Curvilinear Crack Growth Simulations

Chapter 7 analyzes curvilinear crack growth in double cantilever beam (DCB)

specimens and in full-scale narrow body fuselage panel tests. The specific highlights

for curvilinear crack growth in the DCB specimens are:

• Observations in the fl'acture tests indicate that the crack tends to turn away

fl'om its initial crack tip under pure Mode I conditions. The crack growth

directional criterion, incorporating the T-stress effect, is capable of capturing

the essence of crack turning under such circumstance. The predicted results

with rc = 0.09 inch best correlate the experimental data for stable tearing.

The predicted results with rc = 0.06 inch best correlate the experimental

data for fatigue crack growth.

• The fracture toughness orthotropy is introduced to explain the difference

between the measured crack paths in the L-T and T-L orientations. The

orthotropic directional criterion shows a promising nature to correlate the

experimental data.

The specific highlights for curvilinear crack growth in the full-scale narrow body

fuselage panel tests are:

• T-stress has a very mild influence on the early crack trajectory prediction

because of its small magnitude. But as the crack approaches the tear strap,

T-stress increases and plays an important role in the crack turning prediction.

For the case with r_ = 0.09 inch, a sharp turning caused by T-stress is

predicted as the crack approaches the tear strap.

• The fl'acture toughness orthotropy has a strong effect on the early crack tra-

jectory prediction. The predicted crack trajectory, with 10% higher fl'acture

toughness in the T than in the L direction of propagation, agrees well with

that fl'om the experimental measurements, before the crack approaches the

tear strap.
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8.2.4 Recommendations for Future Work

The current methodology assumes that the maximum tangential stress directional

criterion developed under the two-dimensional, LEFM fl'amework can be directly

applied to thin shell problems. Further crack trajectory study of fl'acture coupon

tests and full-scale fuselage panel tests is needed to fully justify the assumption.

A rigorous elastic-plastic directional criterion for non-self-similar stable crack

growth simulations is yet to be found. A procedure that maps the state variables

fl'om one finite element mesh to another as the crack propagates is yet to be

implemented into the FRANC3D/STAGS software program.

Accurate stress intensity factor and T-stress evaluations as the crack approaches

the tear straps are crucial to predict the crack turning. In the current study, the

convergence study was conducted to ensure the accuracy of fl'acture parameter

evaluations. Further study on adaptive and higher order shell finite element anal-

yses may help to improve the accuracy of numerical computation. Other numerical

methods, for example, path independent integrals for geometrically nonlinear shells

may also help to improve the accuracy of fl'acture parameter evaluations.

The physical meaning of the parameter r'c is yet to be found and the appropriate

experimental method to measure r'c is yet to be determined. Further understanding

of fl'acture behavior at the meso- or micro-scale may shed new light on r_, and

furthermore, the crack growth directional criterion.
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